K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

\(A=\sqrt{3+2\sqrt{2}}-\dfrac{1}{2}\sqrt{8}\)

\(=\sqrt{2}+1-\sqrt{2}\)

=1

a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)

b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)

\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)

5 tháng 8 2020

\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)

đề bài là thế này ạ!?

12 tháng 7 2018

Bài 1:

a)  \(B=\sqrt{1-4x+4x^2}\)

         \(=\sqrt{\left(1-2x\right)^2}\)

         \(=\left|1-2x\right|\)

Nếu  \(x\le\frac{1}{2}\)thì:  \(B=1-2x\)

Nếu  \(x>\frac{1}{2}\)thì:  \(B=2x-1\)

b)  Tại \(x=-7\)thì:  \(B=1-2.\left(-7\right)=15\)

12 tháng 7 2018

Bài 2:

\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.2+2^2}+\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+2+2-\sqrt{3}=4\) (đpcm)

a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)

\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)

\(=-2\sqrt{3}-5+6+2\sqrt{3}\)

=1

b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)

\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)

\(=\sqrt{2}-\sqrt{3}\)

a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)

\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)

\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)