K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

Áp dụng BĐT Bunhiacopxky ta có :

﴾ x + 2y ﴿^2 <= ﴾ 1^2 + 2^2 ﴿﴾ x^2 + y^2 ﴿

5^2 <= 5﴾ x^2 + y^2 ﴿

5﴾ x^2 + y^2 ﴿ >= 25

x^2 + y^2 >= 25/5

x^2 + y^2 >= 5 

26 tháng 5 2016

M=x^2/xy+y^2/xy Dk xy khac 0 
M= x/y + y/x 
2M= 2x/y + 2y/x 
2M= 2.x/y + (-x +2y+x)/x 
2M= 2. (x-2y)/y + 2.2y/x - (x-2y)/x+x/x => 2M=2(x-2y)/y -(x-2y)/x +5 
Vi x-2y>=0=>2(x-2y)/y -(x-2y)/x +5>=5 
=> 2M>=5 
=> M>5/2 
vay GTNN cua M=5/2 

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lần sau bạn chú ý viết đầy đủ yêu cầu của đề bài.

25 tháng 5 2016

Áp dụng BĐT Bunhiacopxky ta có :

( x + 2y )2 <= ( 12 + 22 )( x2 + y2 )

5<= 5( x2 + y2 )

5( x2 + y2 ) >= 25

x2 + y2 >= 25/5

x2 + y2 >= 5

NV
2 tháng 9 2021

\(P-\dfrac{5}{2}=x+2y-\dfrac{x^2+y^2}{2}=-\dfrac{1}{2}\left(x-1\right)^2-\dfrac{1}{2}\left(y-2\right)^2+\dfrac{5}{2}\le\dfrac{5}{2}\)

\(\Rightarrow P-\dfrac{5}{2}\le\dfrac{5}{2}\Rightarrow P\le5\)

\(P_{max}=5\) khi \(\left(x;y\right)=\left(1;2\right)\)

3 tháng 9 2021

Cảm ơn nhiều ạ !

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

a.

$x^2-x=y^2-1$
$\Leftrightarrow x^2-x+1=y^2$

$\Leftrightarrow 4x^2-4x+4=4y^2$

$\Leftrightarrow (2x-1)^2+3=(2y)^2$

$\Leftrightarrow 3=(2y)^2-(2x-1)^2=(2y-2x+1)(2y+2x-1)$

Đến đây xét các TH:

TH1: $2y-2x+1=1; 2y+2x-1=3$

TH2: $2y-2x+1=-1; 2y+2x-1=-3$

TH3: $2y-2x+1=3; 2y+2x-1=1$

TH4: $2y-2x+1=-3; 2y+2x-1=-1$

b.

$x^2+12x=y^2$

$\Leftrightarrow (x+6)^2=y^2+36$

$\Leftrightarrow 36=(x+6)^2-y^2=(x+6-y)(x+6+y)$

Đến đây xét trường hợp tương tự phần a.

c.

$x^2+xy-2y-x-5=0$

$\Leftrightarrow x^2+xy=x+2y+5$
$\Leftrightarrow 4x^2+4xy=4x+8y+20$

$\Leftrightarrow (2x+y)^2=4x+8y+20+y^2$

$\Leftrightarrow (2x+y)^2-2(2x+y)+1=y^2+6y+21$

$\Leftrightarrow (2x+y-1)^2=(y+3)^2+12$
$\Leftrightarrow (2x+y-1)^2-(y+3)^2=12$

$\Leftrightarrow (2x+y-1-y-3)(2x+y-1+y+3)=12$

$\Leftrightarrow (2x-4)(2x+2y+2)=12$

$\Leftrightarrow (x-2)(x+y+1)=3$

Đến đây đơn giản rồi.

 

8 tháng 8 2021

a) \(x^2-x=y^2-1\)

\(\Rightarrow x^2-x+1=y^2\)

\(\Rightarrow4x^2-4x+4=4y^2\)

\(\Rightarrow4x^2-4x+1+3=\left(2y\right)^2\)

\(\Rightarrow\left(2x+1\right)^2-\left(2y\right)^2=-3\)

\(\Rightarrow\left(2x-2y+1\right)\left(2x+2y+1\right)=-3\)

Vì \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}\left(2x-2y+1\right)\left(2x+2y+1\right)\in Z\\\left(2x-2y+1\right)\left(2x+2y+1\right)\inƯ\left(7\right)\end{matrix}\right.\)

Ta có bảng:

x-y-10-21
x+y1-20-1
x0-1-10
y1-1-1-1

Vậy \(\left(x,y\right)\in\left\{\left(0;1\right);\left(-1;-1\right);\left(-1;-1\right);\left(0;-1\right)\right\}\)

 

a: =x^3+8-1+27x^3=28x^3+7

b: Sửa đề: (2+y)(y^2-2y+4)+(5-y)(25+5y+y^2)

=8+y^3+125-y^3

=133

21 tháng 3 2017

Các phương trình song song với ∆: x+2y-5=0 có dạng d: x+2y+c=0

Từ đường tròn (C) ta có tâm I(-2;1) và bán kính R=3

Vì đường thẳng d là tiếp tuyến của đường tròn (C) nên ta có:

Vậy hai phương trình tiếp tuyến của đường tròn (C) là: x + 2 y + 3 5 = 0  và x + 2 y - 3 5 = 0 .