Tìm GTNN của biểu thức sau:
-|2x-2|-2^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (2x-3)^2>=0
=>-(2x-3)^2<=0
=>D<=-3
Dấu = xảy ra khi x=3/2
b: (2x-5)^2>=0
(y+1/2)^2>=0
=>(2x-5)^2+(y+1/2)^2>=0
=>D>=2022
Dấu = xảy ra khi x=5/2 và y=-1/2
\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)
Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)
\(ĐTXR\Leftrightarrow x=1\)
Lời giải:
$A=2x^2+y^2+2xy+2x-2y+2023$
$=(x^2+2xy+y^2)+x^2+2x-2y+2023$
$=(x+y)^2-2(x+y)+x^2+4x+2023$
$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$
$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$
$\Leftrightarrow x=-2; y=3$
`P=(x^2+2x+2)/(x^2+2x+3)`
`=> P=(x^2+2x+3-1)/(x^2+2x+3)`
`=> P=1-1/(x^2+2x+3)`
Để `P_(min)` thì `1/(x^2+2x+3)` lớn nhất
`=> x^2+2x+3` nhỏ nhất
Ta có: `x^2+2x+3`
`=x^2+2x+1+2`
`= (x+1)^2+2≥2∀x`
`<=> 1/(x^2+2x+3) ≤1/2 ∀x`
`<=> P_(min)=1-1/2=1/2`
Vậy `P_(min)=1/2` khi `(x+1)^2+2=2 <=>x=-1`
là \(4x+\dfrac{1}{x^2}+2x+2\) hay là \(\dfrac{4x+1}{x^2+2x+2}\) cái neog:0
3x2 + 2x + 3=3.(x2+\(\frac{2}{3}\)x+1)=3.(x2+2.x.\(\frac{1}{3}\)+\(\frac{1}{9}\)+\(\frac{8}{9}\))
=3.(\(\left(x+\frac{1}{3}\right)^2+\frac{8}{9}\))
=3.\(\left(x+\frac{1}{3}\right)^2\)+\(\frac{24}{9}\)>\(\frac{24}{9}\)
Vậy GTNN của 3x2 + 2x + 3=\(\frac{24}{9}\)\(\Leftrightarrow\)\(\left(x+\frac{1}{3}\right)^2\)=0\(\Leftrightarrow\)x=\(-\frac{1}{3}\)