K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

\(A=\frac{x+6}{x+2}=\frac{\left(x+2\right)+4}{x+2}=1+\frac{4}{x+2}\)

\(\Rightarrow\) Để \(A\in Z\) thì \(4\text{⋮}x+2\)

\(\Rightarrow x+2\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow x\in\left\{-6;-4;-3;-1;0;2\right\}\)

10 tháng 5 2016

để A nguyên thì x+6 chia hết cho x+2 

hay (x+2) +4 chia hét cho x+2

vậy x+2 phải là ước của4

mà Ư(4) = 1;-1;2;-2;4;-4

nên ta có

x+2=1=> x= -1

x+2=-1=> x= -3

x+2 = 2=> x=0

x+2=-2=>x=-4

x+2=4=> x=2

x+2=-4=> x=-6

vậy để A nguyên khi x= (-1;-3;0;-4;2;6)

26 tháng 6 2023

ĐKXĐ: \(x\ne\pm3\)

a

Khi x = 1:

\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)

Khi x = 2:

\(A=\dfrac{3.2+2}{2-3}=-8\)

Khi x = \(\dfrac{5}{2}:\)

\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)

b

Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên

\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)

Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)

c

Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên

\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)

\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)

d

\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)

=> Để A, B cùng là số nguyên thì x = 4.

16 tháng 8 2021

undefined

a: Để B nguyên thì \(-7⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;7;-7\right\}\)

hay \(x\in\left\{-2;-4;4;-10\right\}\)

b: Để A là số nguyên thì \(3x+2⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{-2;-4;14;-8\right\}\)

Để A và B cùng là số nguyên thì \(x\in\left\{-2;-4\right\}\)

7 tháng 5 2016

x=2010

7 tháng 5 2016

Chia 4 khoảng trên trục số rồi giải

21 tháng 9 2020

\(A=\frac{3x-1}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

\(B=\frac{2x^2+x-1}{x+2}=\frac{\left(x+2\right)\left(2x-3\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để A,B đều là số nguyên thì \(x-1\in\left\{1;2;-1;-2\right\}\) và \(x+2\in\left\{1;5;-1;-5\right\}\)

Bạn tự làm nốt