\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
Chứng tỏ rằng B nhỏ hơn 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{4}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{4}+\frac{15}{20}=1\)
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}+\frac{1}{4}=\frac{3}{4}+\frac{1}{4}=1\)
Vậy B>1
Hok tốt
\(B=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}< 1\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)
vì \(\frac{1}{2^2}>\frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
\(...\)
\(\frac{1}{8^2}< \frac{1}{7\cdot8}\)
nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\) (1)
\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)
\(B=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{8-7}{7\cdot8}\)
\(B=\left(\frac{2}{1\cdot2}-\frac{1}{1\cdot2}\right)+\left(\frac{3}{2\cdot3}-\frac{2}{2\cdot3}\right)+...+\left(\frac{8}{7\cdot8}-\frac{1}{7\cdot8}\right)\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(B=1-\frac{1}{8}\)
\(B=\frac{7}{8}< 1\) (2)
(1)(2) \(\Rightarrow A< B< 1\)
\(\Rightarrow A< 1\) (đpct)
\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}=\frac{1}{4}+\left(\frac{1}{5}+...+\frac{1}{9}\right)+\left(\frac{1}{10}+...+\frac{1}{19}\right)\) > \(\frac{1}{4}+\left(\frac{1}{9}+\frac{1}{9}+...+\frac{1}{9}\right)+\left(\frac{1}{19}+...+\frac{1}{19}\right)\)> \(\frac{1}{4}+\frac{5}{9}+\frac{10}{19}>\frac{1}{4}+\frac{1}{2}+\frac{1}{2}=1\)
Vậy \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>1\)
B = \(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\)
B = \(\left(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}\right)>\left(\frac{1}{11}+...+\frac{1}{11}\right)+\left(\frac{1}{19}+...+\frac{1}{19}\right)\)
B > \(\frac{240}{209}\)
Vậy B > 1.
\(B=\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{11}\right)+\left(\frac{1}{12}+...+\frac{1}{19}\right)>\left(\frac{1}{12}+\frac{1}{12}+...+\frac{1}{12}\right)+\left(\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)\)=> \(B>\frac{8}{12}+\frac{8}{20}=\frac{2}{3}+\frac{2}{5}=\frac{16}{15}>\frac{15}{15}=1\)
=> ĐPCM
\(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}>\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=1-\frac{1}{5}>1\)
Kết luận B > 1
Bạn chú ý: Đinh Tuấn Việt đã trả lời sai:
\(1-\frac{1}{5}<1\) do đó \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}\)(cái này mình cũng ko hiểu sao bạn có thể làm được như vậy)
nên \(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{19}>\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}<1\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}< 1\)
Vậy \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}< 1\)
c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1/1-1/100
Vì 1/100>0
-->1/1-1/100<1
-->A<1
B=1/4+(1/5+1/6+...+1/19)>1/4+15x1/20
B>1/4+15/20=1/4+3/4=1
\(\Rightarrow\)B>1
help me