K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

Điều kiện để phương trình (1) trên có nghĩa là:

\(\begin{cases}x\ge y+1\\y-1\ge\\x,y\in Z\end{cases}0}\) \(\Leftrightarrow\) \(\begin{cases}y\ge1\\x\ge\\x,y\in Z\end{cases}y+1}\)(2)

Từ phương trình (1) ta có 

\(\frac{C_x^{y+1}}{C_x^{y-1}}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{x!\left(y-1\right)!\left(x-y+1\right)!}{\left(y+1\right)!\left(x-y-1\right)!x!}\) = \(\frac{5}{2}\) \(\Leftrightarrow\) \(\frac{\left(x-y\right)\left(x-y+1\right)}{y\left(y+1\right)}\) = \(\frac{5}{2}\) (3)

Vẫn từ (1) ta có

\(\frac{C_{x+1}^y}{C_x^{y+1}}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) \(\frac{\left(x+1\right)!\left(y+1\right)!\left(x-y+1\right)!}{y!\left(x+1-y\right)!x!}\) = \(\frac{6}{5}\)

\(\Leftrightarrow\) \(\frac{\left(x+1\right)\left(y+1\right)}{\left(x-y\right)\left(x-y+1\right)}\) = \(\frac{6}{5}\) (4)

Nhân từng vế (3), (4) ta có 

\(\frac{x+1}{y}\) = 3 \(\Leftrightarrow\) x+1 = 3y   (5)

Thay (5) vào (4) đi đến

\(\frac{3y\left(y+1\right)}{\left(2y-1\right)2y}\) = \(\frac{6}{5}\) \(\Leftrightarrow\) 15(y+1) = 12(2y-1)

\(\Leftrightarrow\) 9y = 27 \(\Leftrightarrow\) y=3 (6)

Từ (5), (6) có x=8

Vậy x=8, y=3 là nghiệm duy nhất của phương trình (1)

26 tháng 4 2016

Ta có

(1) \(\Leftrightarrow\) 1 + \(C_x^2\) + \(C_x^4\) + ... + \(C_x^{2n}\) \(\ge\) 22003             (2)

Theo công thức khai triển nhị thức newton, ta có

(1+t)2x = \(C_{2x}^0\) + \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + ... + \(C_{2x}^{2x}\)t2x

(1 - t)2x = \(C_{2x}^0\) - \(C_{2x}^1\)t + \(C_{2x}^2\)t2 + .... + (-1)2x\(C_{2x}^{2x}\)t2x

Từ đó ta có

(1 + x)2x + (1 - t)2x = 2(1 + \(C_{2x}^2\)t2 + \(C_{2x}^4\)t4 + ... + \(C_{2x}^{2x}\)t2x)

Thay t = 1, có

1 + \(C_{2x}^2\) + \(C_{2x}^4\) + ... + \(C_{2x}^{2x}\) = 22x-1

Do đó 

(2) \(\Leftrightarrow\) 22x-1 \(\ge\) 22003

     \(\Leftrightarrow\) 2x - 1 \(\ge\) 2003

     \(\Leftrightarrow\) x \(\ge\) 1002

Vậy với mọi số nguyên x \(\ge\) 1002 là nghiệm của (1)

 

2 tháng 5 2016

(1) 1 + + + ... + 2 (2) Theo công thức khai triển nhị thức newton, ta có (1+t) = + t + t + ... + t (1 - t) = - t + t + .... + (-1) t Từ đó ta có (1 + x) + (1 - t) = 2(1 + t + t + ... + t ) Thay t = 1, có 1 + + + ... + = 2 Do đó (2) 2 2 2x - 1 2003 x 1002 Vậy với mọi số nguyên x 1002 là nghiệm của (1)

3 tháng 2 2016

<=> xy+5x+3y+15=xy+8x+y+8                 <=> 3x-2y=7           <=>  9x-6y=21 <=> x=3            <=> x=3

      10xy+14x-15y-21=10xy+10x-12y-12            4x-3y=9                  8x-6y=18       8.3-6y=18           y=1

3 tháng 2 2016

moi hok lop 6 thoi

2 tháng 2 2016

em moi hoc lop 6 thoi sao lam duoc toan lop 9

2 tháng 2 2016

Grade 5 students only know how to do

Bài 2: 

b) Phương trình hoành độ giao điểm của (P) và (d) là:

\(2x^2=-x+3\)

\(\Leftrightarrow2x^2+x-3=0\)

\(\Leftrightarrow2x^2-2x+3x-3=0\)

\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Thay x=1 vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot1^2=2\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:

\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)

Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)

14 tháng 5 2021

đk: \(y\ge1\)

Ta có: \(\hept{\begin{cases}2\left(x+2\right)-\sqrt{y-1}=6\\5\left(x+2\right)-2\sqrt{y-1}=16\end{cases}}\Leftrightarrow\hept{\begin{cases}4\left(x+2\right)-2\sqrt{y-1}=12\\5\left(x+2\right)-2\sqrt{y-1}=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+2=4\\2\left(x+2\right)-\sqrt{y-1}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\\sqrt{y-1}=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\y-1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=5\end{cases}}\)

Vậy \(\hept{\begin{cases}x=2\\y=5\end{cases}}\)

18 tháng 1 2021

Mình mạn phép sửa lại phương trình $2$ của bạn là $mx+3y=1$ nhé.

ĐK: $m\neq 0$

a) Khi $m=2,$ hệ phương trình là:

\(\left\{{}\begin{matrix}-4x+y=5\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+y=5\\4x+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-1\)

b) \(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2mx+y=5\\2mx+6y=2\end{matrix}\right.\Rightarrow7y=7\Leftrightarrow y=1\Rightarrow x=-\dfrac{2}{m}\)

c) Do ta luôn có $y=1$ là số dương nên chỉ cần chọn $m$ sao cho:

\(x=-\dfrac{2}{m}>0\Leftrightarrow m< 0\)

d) \(x^2+y^2=1\Leftrightarrow\left(-\dfrac{2}{m}\right)^2+1^2=1\Leftrightarrow\dfrac{4}{m^2}=0\) (vô lý)

Vậy không tồn tại $m$ sao cho $x^2+y^2=1.$

20 tháng 5 2021

\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{1}{y}=2\\\dfrac{6}{x}-\dfrac{2}{y}=1\end{matrix}\right.\)

\(TC:\)

\(\dfrac{1}{x}=a,\dfrac{1}{y}=b\)

\(\Rightarrow\left\{{}\begin{matrix}2a+b=2\\6a-2b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4a+2b=4\\6a-2b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\10b=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a+b=2\\b=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

20 tháng 5 2021

\(\begin{cases} \dfrac{2}{x} + \dfrac{1}{y} = 2 \\ \dfrac{6}{x} - \dfrac{2}{y} = 1 \\\end{cases} (ĐK: x;y \neq 0)\)

Đặt \(\dfrac{1}{x} = u \) và \(\dfrac{1}{y} = v\) (\(u;v\neq 0\)) thì hệ đã cho trở thành

\(\begin{cases} 2u + v = 2 \\ 6u - 2v = 1 \\\end{cases}\) \(<=> \begin{cases} 4u + 2v = 4 \\ 6u - 2v = 1 \\\end{cases} <=> \begin{cases} 10u = 5 \\ 2u + v = 2 \\\end{cases} <=> \begin{cases} u = \dfrac{1}{2} \\ 2 .\dfrac{1}{2} + v = 2 \\\end{cases} <=> \begin{cases} u = \dfrac{1}{2} \\ v = 1 \\\end{cases} (T/m)\)

=> \(\begin{cases} \dfrac{1}{x} = \dfrac{1}{2} \\ \dfrac{1}{y} = \dfrac{1}{1} \\\end{cases} <=> \begin{cases} x= 2 \\ y = 1 \\\end{cases} (T/m)\)

24 tháng 12 2017

ban dat 1/x+y=a va 1/y-1=b roi giai nhu binh thuong. tim dc a,b thay vao la ra