Tìm 1 số có 3 chữ số và nhỏ nhất biết số đó chia 8 dư 7;chia 31 dư 28
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a ( a∈Na∈N ; a≤999a≤999 )
Để tìm số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài, ta cần tìm số đó bằng cách thử từng số tự nhiên có 2 chữ số cho đến khi tìm được số thỏa mãn yêu cầu.
Ta gọi số cần tìm là AB (với A và B lần lượt là chữ số hàng chục và hàng đơn vị của số đó). Theo đề bài, ta có:
- AB chia cho 8 dư 7: tức là AB = 8k + 7 với k là số nguyên dương nào đó.
- AB chia cho 7 dư 4: tức là AB = 7m + 4 với m là số nguyên dương nào đó.
Từ hai phương trình trên, ta suy ra:
- 8k + 7 = 7m + 4
- 8k - 7m = -3
Để giải phương trình này, ta thử các giá trị nguyên dương của k và m cho đến khi tìm được cặp giá trị thỏa mãn phương trình. Ta có:
- Khi k = 1, m = 2: 8 - 7 = -3 (không thỏa mãn)
- Khi k = 2, m = 3: 16 - 21 = -5 (không thỏa mãn)
- Khi k = 3, m = 4: 24 - 28 = -4 (khớp với phương trình)
Vậy số tự nhiên nhỏ nhất có 2 chữ số thỏa mãn yêu cầu đề bài là số 27.
👍
Những số có 2 chữ số chia cho 8 dư 7 là:
16+7,24+7,32+7,40+7,...88+7
= 23,31,39,47,...,95
Những số có 2 chữ số chia 7 dư 4 là:
14+4,21+4,28+4,...91+4
= 18,25,32,39,...95
Ở 2 dãy số trên, ta thấy số bé nhất mà 2 dãy lặp lại là 39, nên số cần tìm mà thỏa mãn đề bài là số 39
Gọi số cần tìm là a thì 3a – 7 ∈ BC(8;11) và và a là số nhỏ nhất thỏa mãn 100≤a≤999 suy ra 293≤ 3a – 7 ≤2990
BCNN(8;11) = 88
3a – 7 ∈ {0;88;176;264;352;440;..}
Vì a là số tự nhiên có ba chữ số nhỏ nhất nên 3a – 7 = 440
a = 149
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Gọi số cần tìm là a
Ta có a:8 dư 7=>(a+1)\(⋮\)8=>(a+1+64)\(⋮\)8=>a+65\(⋮\)8(1)
a:31 dư 28=>(a+3)\(⋮\)31=>(a+3+62)\(⋮\)31=>a+65\(⋮\)31(2)
Từ (1) và (2)=>a+65EBC(8;31}={0;248;496;...}
Mà a là số có 3 chữ số và nhỏ nhất
=>a+65=248
a=183
Vậy số cần tìm là 183
Phải làm thế này nè
Gọi số tự nhiên cần tìm là n (n N; n 999)
n chia 8 dư 7 (n+1) chia hết cho 8
n chia 31 dư 28 (n+3) chia hết cho 31
Ta có ( n+ 1) + 64 chia hết cho 8 = (n+3) + 62 chia hết cho 31
Vậy (n+65) chia hết cho 31 và 8
Mà (31,8) = 1
n+65 chia hết cho 248
Vì n 999 nên (n+65) 1064
Để n là số tự nhiên lớn nhất thoả mãn điều kiện thì cũng phải là số tự nhiên lớn nhất thỏa mãn
n = 927
Vậy số tự nhiên cần tìm là : 927