cho hàm sốP=y=ax^2 và đường thẳng (d) y=7x+7
a,tìm a để đường thẳng hàm số đi qua A(-1;-1)
b,với a vừa tìm câu (a) tìm tọa đọ giao điểm p và d theo phương pháp đại số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) -1=a*(-1)^2=>a=-1
b)(P): y=-1x^2; (d): y=7x+7
pt hoành độ -1x^2=7x+7
đặt đen ta giải pt ra ta dc x1=...;x2=...
thay từng gtrị x vào (P) ta được y1=....;y2=....
a: Để hai đường thẳng y=-3x+2 và y=ax-2 song song với nhau thì
\(\left\{{}\begin{matrix}a=-3\\2\ne-2\left(đúng\right)\end{matrix}\right.\)
=>a=-3
b: Để hai đường thẳng y=-3x+2 và y=ax-2 cắt nhau thì \(a\ne-3\)
c: Thay x=1 và y=0 vào y=ax-2, ta được:
a*1-2=0
=>a-2=0
=>a=2
a, Vì hàm số y=ax+b song song với đường thẳng y=3x nên a=3 (1)
và hàm số đi qua điểm M(5;1) nên ta có x=5; y=1 (2)
Từ (1) và (2), ta có 3.5+b=1
<=> b= -14
Vậy hàm số y=ax+b có dạng y=3x-14
a) y=3x-14
b) xét...
-x2=2x+m ⇔x2+2x+m=0 (1)
.................. Δ'=0 hay 1-m=0
Suy ra m=1
KL:...............
a) (d) đi qua \(A\left(2;-2\right)\Rightarrow-2=2a+b\)
Vì \((d)\parallel (d')\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b\ne1\end{matrix}\right.\)
\(\Rightarrow-2=1+b\Rightarrow b=-3\Rightarrow y=\dfrac{1}{2}x-3\)
b) Có a,b rồi thì bạn tự vẽ nha
a. \(PTHDGD:\left(d\right)-\left(d'\right):2x+3=x-1\)
\(\Rightarrow x=-4\left(1\right)\)
Thay (1) vào (d'): \(y=-4-1=-5\)
\(\Rightarrow M\left(-4;-5\right)\)
\(a,\text{PT hoành độ giao điểm: }2x+3=x-1\\ \Leftrightarrow x=-4\Leftrightarrow y=-5\\ \Leftrightarrow M\left(-4;-5\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}-2a+b=3\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)
Do (d1) song song với đường thẳng y = 2x nên a = 2
(d1): y = 2x + b
Thay tọa độ điểm (1; -1) vào (d) ta được:
2.1 + b = -1
⇔ b = -1 - 2
⇔ b = -3
Vậy (d1): y = 2x - 3
b) x = 0 ⇒ y = -3
*) Đồ thị:
c) Phương trình hoành độ giao điểm của (d1) và (d2):
2x - 3 = 1/2 x + 1
⇔ 2x - 1/2 x = 1 + 3
⇔ 3/2 x = 4
⇔ x = 4 : 2/3
⇔ x = 8/3
⇒ y = 2.8/3 - 3 = 7/3
Vậy tọa độ giao điểm của (d1) và (d2) là (8/3; 7/3)
d) Ta có:
Gọi a là góc cần tính
⇒ tan(a) = 2
⇒ a ≈ 63⁰
(b) và (d) bạn tự xem kiến thức vẽ rồi áp dụng công thức tan là làm được nha=)
a)
Đồ thị hàm số (d1)// đường thẳng `y=2x`
=> \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne0\end{matrix}\right.\)
=> `y=2x+b`
Do hàm số `y=2x+b` đi qua điểm `(1;-1)` nên `x=1`, `y=-1`:
`-1=2.1+b`
=> `b=-3`
Vậy hàm số `y=ax+b` là `y=2x-3`
c)
Ta có PTHĐGĐ giữa `d_1` và `d_2`:
\(2x-3=\dfrac{1}{2}x+1\\ \Rightarrow x=\dfrac{8}{3}\Rightarrow y=\dfrac{7}{3}\)
Vậy `E=`\(\left(\dfrac{8}{3};\dfrac{7}{3}\right)\)
$HaNa$
a) Để đường thằng hàm số đi qua A (-1 ; 1) thì P = -1 = a . (-1)2 => a = -1
b) Tọa độ giao điểm của P và d là : -x2 = 7x + 7
< = > x2 + 7x + 7 = 0
< = > \(\Delta\)=72-4.1.7=21 > 0
Vậy PT có 2 nghiệm phân biệt x1 = \(\frac{-7+\sqrt{21}}{2}\)=> y1 = 7x1 + 7 = \(\frac{-35+7\sqrt{21}}{2}\)
x2 = \(\frac{-7-\sqrt{21}}{2}\)=> y2=7x2+7 = \(\frac{-35-7\sqrt{21}}{2}\)
Ta có: Tọa độ giao điểm của P và d là A (\(\frac{-7+\sqrt{21}}{2}\) ; \(\frac{-35+7\sqrt{21}}{2}\))
B(\(\frac{-7-\sqrt{21}}{2}\);\(\frac{-35-7\sqrt{21}}{2}\))
thanks nhìu nha