Chứng tỏ A không là số nguyên:
A= 1 phần 4 + 1 phần 5 + 1 phần 6 + 1 phần 7 +...+ 1 phần 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a,
-Ta có:
$B<1\Leftrightarrow B<\frac{10^{2005}+1+9}{10^{2006}+1+9}=\frac{10^{2005}+10}{10^{2006}+10}=\frac{10(10^{2004}+1)}{10(10^{2005}+1)}=\frac{10^{2004}+1}{10^{2005}+1}=A$
-Vậy: B<A
b,$A=1+(\frac{1}{2})^2+...+(\frac{1}{100})^2$
$\Leftrightarrow A=1+\frac{1}{2^2}+...+\frac{1}{100^2}$
$\Leftrightarrow A<1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}$
$\Leftrightarrow A<1+\frac{1}{1}-\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}$
$\Leftrightarrow A<1+1-\frac{1}{100}\Leftrightarrow A<2-\frac{1}{100}\Leftrightarrow A<2(đpcm)$
2,
a.
-Ta có:$\Rightarrow \frac{3x+7}{x-1}=\frac{3(x-1)+16}{x-1}=\frac{3(x-1)}{x-1}+\frac{16}{x-1}=3+\frac{16}{x-1}
-Để: 3x+7/x-1 nguyên
-Thì: $\frac{16}{x-1}$ nguyên
$\Rightarrow 16\vdots x-1\Leftrightarrow x-1\in Ư(16)\Leftrightarrow ....$
b, -Ta có:
$\frac{n-2}{n+5}=\frac{n+5-7}{n+5}=1-\frac{7}{n+5}$
-Để: n-2/n+5 nguyên
-Thì: \frac{7}{n+5} nguyên
$\Leftrightarrow 7\vdots n+5\Leftrightarrow n+5\in Ư(7)\Leftrightarrow ...$
a, \(\frac{3}{5}+\frac{-4}{15}=\frac{9}{15}-\frac{4}{15}=\frac{5}{15}=\frac{1}{3}\)
b, \(\frac{-1}{3}+\frac{2}{5}+\frac{2}{15}=\frac{-5}{15}+\frac{6}{15}+\frac{2}{15}=\frac{3}{15}=\frac{1}{5}\)
c, \(\frac{-3}{5}+\frac{7}{21}+\frac{-4}{5}+\frac{7}{5}=\frac{-3}{5}+\frac{1}{3}+\frac{-4}{5}+\frac{7}{5}=\left(\frac{-3}{5}+\frac{-4}{5}+\frac{7}{5}\right)+\frac{1}{3}=\frac{1}{3}\)
d, \(\frac{2}{7}+\frac{1}{9}+\frac{3}{7}+\frac{5}{9}+\frac{-5}{6}=\left(\frac{2}{7}+\frac{3}{7}\right)+\left(\frac{1}{9}+\frac{5}{9}\right)+\frac{-5}{6}=\frac{5}{7}+\frac{6}{9}+\frac{-5}{6}=\frac{90}{126}+\frac{84}{126}+\frac{-105}{126}=\frac{69}{126}=\frac{23}{42}\)
e, \(\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}=\left(-1\right)+1+\frac{-1}{5}=\frac{-1}{5}\)
f, \(\frac{-3}{31}+\frac{-6}{17}+\frac{1}{25}+\frac{-28}{31}+\frac{-1}{17}+\frac{-1}{5}=\left(\frac{-3}{31}+\frac{-28}{31}\right)+\left(\frac{-6}{17}+\frac{-1}{17}\right)+\left(\frac{1}{25}+\frac{-1}{5}\right)=\left(-1\right)+\frac{-7}{17}+\frac{-4}{25}=\frac{-425}{425}+\frac{-175}{425}+\frac{-68}{425}=\frac{-668}{425}\)
Chúc bn học tốt
a) = ( 9/10 - 4/5) + ( 3/4 + 1/2)
= ( 9/10 - 8/10) + ( 3/4 + 2/4)
= 1/10 + 5/4
= 2/20 + 25/20 = 27/20
b) = (4/5 + 4/15) + (5/6 - 1/2)
= (12/15 - 4/15) + (5/6 - 3/6)
= 8/15 + 2/6
= 16/30 + 10/30
= 26/30 = 13/15
c) = 55 - 39 - 1 + 60 /75 = 75/75 = 1
d) = 47 + 35 - 36 + 15/42 = 61/42
Ta có:
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}+\frac{1}{16}=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)\(+\left(\frac{1}{15}+\frac{1}{16}\right)\)
Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}<3.\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}<3.\frac{1}{9}=\frac{1}{3}\)
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}<3.\frac{1}{12}=\frac{1}{4}\)
\(\frac{1}{15}+\frac{1}{16}<3.\frac{1}{15}=\frac{1}{5}\)
Nên \(A<2.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)<2.\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\) (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Có mình ra đề này rồi nhưng khác số và cũng giảng luôn. Mình ghi lời giải của mình ra rồi đưa vào đó làm được ko?
Đề của cô mình nè A=1/2+1/3+1/4+...+1/15+1/16.Chứng tỏ rằng A không phải là số tự nhiên.