Cho hàm số : \(y=\frac{x}{2x-1}\left(C\right)\).
Tìm k để đường thẳng đi qua điểm \(A\left(5;\frac{1}{3}\right)\) có hệ số góc k tiếp xúc với (C)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)
b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0
hay k>2
Bài 2:
Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:
\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)
\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)
\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)
\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)
hay \(m=\dfrac{1}{3}\)
a)
\(\begin{array}{l}f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}{x^2} - \frac{1}{2}}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {{x^2} - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\frac{1}{2}\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{1}{2}\left( {x + 1} \right) = \frac{1}{2}\left( {1 + 1} \right) = 1\end{array}\)
b) Phương trình đường thẳng \(d\) đi qua điểm \(M\left( {1;\frac{1}{2}} \right)\) và có hệ số góc bằng \(k = f'\left( 1 \right) = 1\) là: \(y - \frac{1}{2} = 1\left( {x - 1} \right) \Leftrightarrow y = x - 1 + \frac{1}{2} \Leftrightarrow y = x - \frac{1}{2}\).
Đường thẳng \(d\) cắt đồ thị hàm số \(\left( C \right)\) tại duy nhất điểm \(M\left( {1;\frac{1}{2}} \right)\).
Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:
giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2
Ta đi tìm số dư 1 cách tổng quát:
Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\)
Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3
từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\)
Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này )
áp dụng vào bài toán ta có:
\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)
Gán: \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i
\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke
Khiếp học ghê như vầy bảo dạy người ta thì kêu thôi, sợ sót kiến thức :)))?
Lâu rồi mới chơi dạng này, ko biết có đúng ko nx!
a) Thay x = 5/2 ; y = -5 ta được \(-5=k.\frac{5}{2}\Rightarrow k=\left(-5\right):\frac{5}{2}=-2\)
Vậy ta có hàm số \(y=-2x\)
b) Với x = 1 suy ra y = -2. Ta có toạ độ D(1;-2)
O x 1 2 3 -1 -2 -3 -4 y 1 2 3 -1 -2 D y=-2x
c) Quên mất cách làm rồi, mà cho hỏi CT O là cái gì vại? Để biết đường còn suy nghĩ với lục lọi sách giáo khoa tìm hướng giải, you viết tắt quá ai hiểu nổi @@
Lời giải:
a. Với $m=1$ thì ptđt $(d)$ là: $y=x+1$
b. Trung điểm của 2 đường thẳng??? Đường thẳng thì làm gì có trung điểm hả bạn? Đoạn thẳng thì có.
c. $(d)$ cắt $y=x-2$ tại điểm có hoành độ $-1$
$\Leftrightarrow$ PT hoành độ giao điểm $(2-m)x+2m-1-(x-2)=0$ nhận $x=-1$ là nghiệm
$\Leftrightarrow (2-m)(-1)+2m-1-(-1-2)=0$
$\Leftrightarrow m=0$
a: Thay x=0 và y=0 vào (1), ta được:
k=0
c: Để (1)//\(y=\left(\sqrt{3}+1\right)x+3\), ta được:
\(\left\{{}\begin{matrix}k+1=\sqrt{3}+1\\k\ne3\end{matrix}\right.\Leftrightarrow k=\sqrt{3}\)
b: Phương trình hoành độ giao điểm là:
-x+3=-2x+1
\(\Leftrightarrow x=-2\)
Thay x=-2 vào y=-x+3, ta được;
y=2+3=5
Thay x=-2 và y=5 vào (d), ta được:
\(-2\left(2-m\right)+2m-1=5\)
\(\Leftrightarrow2m-4+2m-1=5\)
\(\Leftrightarrow4m=10\)
hay \(m=\dfrac{5}{2}\)
a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)
=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)
Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)
=>m-5=2
=>m=7
b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)
=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)
=>2m-1=1
=>2m=2
=>m=1
ta có: y'=\(\frac{-1}{\left(2x-1\right)^2}\)<0 với mọi x thuộc R
TA có k = y'(5)= \(\frac{-1}{81}\)
gnbhmn