tìm gtnn của:
B=|x-1/3| + |x-5/3|
giúp đi ngu lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left|x-\dfrac{1}{3}\right|+\left|\dfrac{5}{3}-x\right|\ge\left|x-\dfrac{1}{3}+\dfrac{5}{3}-x\right|=\left|\dfrac{4}{3}\right|=\dfrac{4}{3}\)
dấu"=" xảy ra<=>\(-\dfrac{1}{3}\le x\le\dfrac{5}{3}\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$B=|x-\frac{1}{3}|+|x-\frac{5}{3}|=|x-\frac{1}{3}|+|\frac{5}{3}-x|$
$\geq |x-\frac{1}{3}+\frac{5}{3}-x|=\frac{4}{3}$
Vậy GTNN của $B$ là $\frac{4}{3}$. Giá trị này đạt tại $(x-\frac{1}{3})(\frac{5}{3}-x)\geq 0$
$\Leftrightarrow \frac{1}{3}\leq x\leq \frac{5}{3}$
`1. P = x/(sqrt x-1)`
`= (x-1+1)/(sqrtx-1)`
`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`
`= sqrt x+1 + 1/(sqrt x-1)`
`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.
ĐTXR `<=> (sqrtx-1)^2 = 1`.
`<=> x =4` hoặc `x = 0 ( ktm)`.
Vậy Min A `= 4 <=> x= 4`.
1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)
\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)
Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)
\(\Rightarrow P\ge2+2=4\)
Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
KL;....
\(\sqrt{\left(2x^2-x-1\right)^2+9}\ge\sqrt{9}=3\)
min B =3 \(\Leftrightarrow2x^2-x-1=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)
a) ta có để h(x)=3.|x-2|+5 đạt GTNN
=>3.|x-2| nhỏ nhất
mà 3.|x-2| không âm
=>3.|x-2|>hoặc = 0 mà để 3.|x-2|nhỏ nhất
=>3.|x-2|=0
=>x=2
thay h(2)=3.|2-2|+5=5
vậy GTNN của h(x)=1/2
b) để 1/(x^2-2x+2) đạt GTLN
=> x^2-2x+2 nhỏ nhất
=> x^2-2x nhỏ nhất mà x^2-2x ko âm
=> x^2-2x>hoặc =0
=> x^2-2x=0
=>x=0
thay 1/(1^2-2.1+2)=1/2
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
GTNN của A:
Khi \(x< -98:A=1-x-x-98=-2x-97>99\)
Khi \(-98\le x< 1:A=1-x+x+98=99\)
Khi \(x\ge1:A=x-1+x+98=2x+97\ge99\)
Vậy GTNN của A là 99 khi \(-98\le x\le1.\)
Tượng tự với biểu thức B và C.
\(\left(2x-5\right)^{200}+|x+1|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)(vì \(\left(2x-5\right)^{200}\ge0;|x+1|\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-1\end{cases}}\)
Vậy không có giá trị nào của x.
Khi \(x< -1:B=-x-1-x+2-x+5=-3x+6>9\)
Khi \(-1\le x< 2:B=x+1-x+2-x+5=-x+8>6\)
Khi \(2\le x< 5:B=x+1+x-2-x+5=x+4\ge6\)
khi \(x\ge5:B=x+1+x-2+x-5=3x-6\ge9\)
Vậy GTNN của B là 6 khi \(2\le x< 5\)
Tìm GTNN của C tương tự.
x2-4x+4=4x2-12x+9
\(\Leftrightarrow\)3x2-8x+5=0
\(\Leftrightarrow\)3x2-3x-5x+5=0
\(\Leftrightarrow\)3x(x-1)-5(x-1)=0
\(\Leftrightarrow\)(x-1)(3x-5)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)
b,x2-2x-25=0
\(\Leftrightarrow\)(x-1)2-26=0
\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)
2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4
b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017
mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory
Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3
Bài 1:
a) \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)
\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)
VẬy tập nghiệm của phương trình là : S={11/3 ; 7}
b) Nếu x^2 -2x =25 thì lẻ lắm . Tớ nghĩ phải là : x^2 -2x = 24
Bài 2 :
a) \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\) hay \(A\ge4\)
Vậy GTNN của A là 4 khi x = 1 ( hay x-1 =0 )
b) \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y+1\right)^2\ge0\) nên \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)
HAy \(B\ge-2017\) Vậy GTNN của B là -2017 khi x=1/2 và y = -1
\(B=\left|x-\frac{1}{3}\right|+\left|x-\frac{5}{3}\right|\)
\(=\left|x-\frac{1}{3}\right|+\left|\frac{5}{3}-x\right|\)
\(\ge\left|x-\frac{1}{3}+\frac{5}{3}-x\right|=\frac{4}{3}\)
Dấu \(=\)khi \(\left(x-\frac{1}{3}\right)\left(\frac{5}{3}-x\right)\ge0\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\).