Tìm tất cả các số nguyên tố a,b,c thỏa mãn : a.(a+1) + b.(b+1) = c.(c+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát ta giả sử
\(a\ge b\ge b\ge d\)
\(\Rightarrow\frac{1}{abcd}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{4}{a}\)
\(\Leftrightarrow\frac{1}{bcd}\ge4\)
\(\Leftrightarrow bcd\le\frac{1}{4}\)
Vậy phương trình vô nghiệm.
\(\overline{abc}=100a+10b+c=a+b+c+263\)
\(\Rightarrow99a+9b=263\)
\(\Rightarrow9\left(11a+b\right)=263\)
mà \(263\) là số nguyên tố
Nên không tồn tại \(\left(a;b\right)\) thỏa đề bài.
Ta có:
c=a^b+b^a\ge2^2+2^2>2c=ab+ba≥22+22>2
=> c là số lẻ
=> trong a,b phải có 1 số chẵn
Xét a chẵn => a = 2
=> 2b + b2 = c
Xét b > 3 => b2 chia 3 dư 1
=> b2 chia 3 dư 1
2b chia 3 dư 2
=> 2b + b2 chia hết cho 3
=> c chia hết cho 3
=> c = 3
mà ab + ba = c > 3 ( loại c = 3)
Xét b = 3 => c = 17
Vậy (a,b,c) = (2,3,17) hoặc ( 3,2,17)