Cho điểm A(-4;5) và 2 đường thẳng \(d_1;d_2\) lần lượt có phương trình \(5x+3y-8=0\) và \(3x+8y+11=0\)
Viết phương trình tổng quát của các đường thẳng chứa cạnh của tam giác ABC biết rằng \(d_1;d_2\) theo thứ tự là các đường cao kẻ từ B, C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Vì OA và OB là hai tia đối nhau
nên điểm O nằm giữa hai điểm A và B
mà OA=OB
nên O là trung điểm của AB
b: Để C là trung điểm của OB thì OC=OB
hay a=4(cm)
a: Vì OA và OB là hai tia đối nhau
nên điểm O nằm giữa hai điểm A và B
mà OA=OB
nên O là trung điểm của AB
b: Để C là trung điểm của OB thì OC=OB
hay a=4(cm)
Chọn 1 trong 4 điểm ta vẽ được 3 đường thẳng đi qua 2 điểm
Cứ làm như thế với 4 điểm đó ta vẽ được : 4.3=12 đường thẳng
Vì mỗi đường thẳng được tính 2 lần
=> Số đường thẳng được tạo thành là 12:2=6
Ta có: \(\overrightarrow {AD} \left( { - 2;10} \right),{\mkern 1mu} \overrightarrow {AB} \left( { - 1;5} \right) \Rightarrow \overrightarrow {AD} = 2\overrightarrow {AB} \)
\(\Rightarrow\) 3 điểm \(A,B,D\) thẳng hàng.
A B C d2 d1
Vì \(d_1\) là đường cao kẻ từ B nên đường thẳng AC vuông góc với \(d_1\)
Đường thẳng \(d_1\) có vec tơ pháp tuyến \(\overrightarrow{n}=\left(5;3\right)\) do đó nhận \(\overrightarrow{u}=\left(3;-5\right)\) làm vec tơ chỉ phương.
Vậy đường thẳng AC đi qua A(-4;5), với vec tơ pháp tuyến \(\overrightarrow{u}=\left(3;-5\right)\), do dó có phương trình \(3\left(x+4\right)-5\left(y-5\right)=0\) hay \(3x-5y+37=0\)
Đường thẳng AC cắt \(d_2\) tại C có tọa độ của hệ :
\(\begin{cases}3x+8y+11=0\\3x-5y+37=0\end{cases}\)
Giải hệ thu được (x;y)=(-9;2) do đó C(-9;2)
Tương tự như trên cũng được phương trình tổng quát AB là \(8x-3y+47=0\) và \(B\left(-3;\frac{23}{3}\right)\)
Từ đó \(\overrightarrow{BC}=\left(-6;-\frac{17}{3}\right)=-\frac{1}{3}\left(18;17\right)\)
Suy ra đường thẳng BC có vec tơ chỉ phương \(\overrightarrow{u}=\left(18;17\right)\) do đó nhận vec tơ \(\overrightarrow{n}=\left(17;-18\right)\) làm vec tơ pháp tuyến
Vậy BC có phương trình tổng quát \(17\left(x+9\right)-18\left(y-2\right)=0\) hay \(17x-18y+189=0\)