K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Từ GT => a=1-b. Thay vòa biểu thức cần chứng minh ta được:

\(a^3+b^3=3b^2-3b+1=3\left(b^2-b+\frac{1}{4}\right)+1-\frac{3}{4}=3\left(b-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

8 tháng 5 2018

chiều dài tấm vải chính bằng tổng số mét vải đã bán (vì ở đề bài nói rằng ngày 3 bán nốt 40m)

8 tháng 5 2018

a)\(a^4+16\ge2a^3+8a\)

\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)

\(\Leftrightarrow\left(a-2\right)^2\left(\left(a+1\right)^2+3\right)\ge0\)*Luôn đúng*

\("="\Leftrightarrow a=2\)

b)Cô si: \(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

Nhân theo vế 2 BĐT trên ta đc ĐPCM

\("="\Leftrightarrow a=b\)

6 tháng 8 2019

a) \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

b) Áp dụng câu a) ta được :

\(a^3+b^3+1=a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\)

Chứng minh tương tự ta có :

\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng theo vế của các bất đẳng thức :

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{1}{\frac{a+b+c}{c}}+\frac{1}{\frac{a+b+c}{a}}+\frac{1}{\frac{a+b+c}{b}}\)

\(=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

28 tháng 9 2017

ta có: (a+b)/3 = (b+c)/4 =>4a+4b=3b+3c=>4a+b-3c=0 (1)

ta có : (b+c)/3=(c+a)/5=> 5b+5c=4c+4a => 4a-5b-c=0=> 4a= 5b+c (2)

ta có: (c+a)/5=(a+b)/3 => 5a+5b= 3c+3a => 2a+5b-3c=0 => 3c=2a+5b (3)

THay (2) vào (1) ta dc:c = 3b

tay (3) vao (1) ta đc: a = 2b

M= 8a-b-5c+2016=8.2b-b-5.3b+2016=2016. HẾT

20 tháng 12 2017

lam sao ma ra dc a=2b zay

4 tháng 1 2018

Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

dấu = xảy ra <=> x=y

Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)

dấu = xảy ra <=>a=b=1/2

4 tháng 1 2018

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)

\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)

\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)