solo nek sherk!
Bài 1:Cho tam giác ABC có AB<AC. Đường phân giác AD. Chứng minh:
a/Góc ADB<ADC
b/DB<DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a. Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)
\(BC^2=10^2=100\)
\(\Rightarrow AB^2+AC^2=BC^2\) \(\Rightarrow\Delta\)ABC vuông tại A
b. \(\Delta\)ABC vuông tại A, đường cao AH. Ta có:
AB.AC = AH.BC
hay 6.8 = AH.10
=> AH = \(\dfrac{6.8}{10}=4.8\)
A B C D E F
a, Xét \(\Delta ABC\) có:
\(BC^2=5^2=25\)
\(AB^2+AC^2=3^2+4^2=25\)
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lí Pytago đảo) (đpcm)
b, Ta có: \(\widehat{BAD}=90^o\) (vì \(\Delta ABC\) vuông tại A)
\(\widehat{BED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{BAD}=\widehat{BED}=90^o\)
Xét \(\Delta ABD\) và \(BDE\) có:
\(\widehat{BAD}=\widehat{BED}=90^o\) (chứng minh trên)
BD cạnh chung
\(\widehat{ABD}=\widehat{DBE}\) (vì BD là tia phân giác của \(\widehat{ABC}\))
\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn)
\(\Rightarrow AD=DE\) (2 cạnh tương ứng) (đpcm)
c, Ta có: \(\widehat{DAF}=90^o\) (vì kề bù với \(\widehat{BAD}=90^o\))
\(\widehat{CED}=90^o\) (vì \(DE\perp BC\) tại E)
\(\Rightarrow\widehat{DEC}=\widehat{DAF}\)
Xét \(\Delta ADF\) và \(\Delta CDE\) có:
\(\widehat{DEC}=\widehat{DEF}\) (chứng minh trên)
AD = DE (vì \(\Delta ADF=\Delta EDC\))
\(\widehat{ADF}=\widehat{CDE}\) (2 góc đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\) (đpcm)
A B D C
Vì AB<AB nên góc ACB < góc ABC ( quan hệ giữa góc và cạnh đối diện)
Hay còn nói góc ACD < góc ABD
Xét \(\Delta ADC\) có góc ADB là góc ngoài nên góc ADB = góc ACD + góc\(\frac{BAC}{2}\)
Xét \(\Delta ADB\) có góc ADC là góc ngoài nên góc ADC = góc ABD + góc \(\frac{BAC}{2}\)
Mà góc ACD < góc ABD nên góc ADB < góc ADC.
Khỏi cần tik lởm