Tìm \(\frac{a}{b}\) sao cho \(\frac{4}{9}\) <\(\frac{a}{b}\)<\(\frac{10}{21}\) và 5a-2b=3
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
27 tháng 2 2017
Tỉ số của a và b là:
2 : 5 = \(\frac{2}{5}\)
Số a là:
3 : ( 5 - 2 ) x 2 = 2
Số b là:
3 + 2 = 5
Vậy \(\frac{a}{b}\)là: \(\frac{2}{5}\)
28 tháng 8 2020
C Ở DÂU HẢ BẠN!!
\(\frac{4}{9}< \frac{5}{11}< \frac{10}{21}\)VÀ\(5.5=25-2.11=3\)
G
0
TL
1
DT
Dang Tung
CTVHS
29 tháng 2 2024
\(\dfrac{4}{9}< \dfrac{a}{b}\left(b\ne0\right)< \dfrac{10}{21}\\ \Rightarrow\dfrac{21}{63}< \dfrac{a}{b}< \dfrac{30}{63}\)
\(\Rightarrow\left\{{}\begin{matrix}21< a< 30\\b=63\end{matrix}\right.\)
Lại có : 5a-2b=3
=> 5a=3+2.63
=> 5a=129
=> a=129/5 (thỏa mãn)
Khi đó : \(\dfrac{a}{b}=\dfrac{\dfrac{129}{5}}{63}\)
PH
0
Ta có: 4/9<a/b
=>4b<9a hay 5a+4a>2b+2b
5a-2b>4a+2b
3>4a+2b(1)
Ta có: a/b<10/21
=>21a<10b hay 5a+16a<2b+8b
5a-2b<8b-16a(2)
Từ (1);(2) =>4a+2b<8b-16a
4a+16a<8b-2b
20a<6b
a/b<6/20
Vậy a/b<6/20 thì thỏa mãn đề*nghĩ v*
đợi e coi