K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

Kẻ đường cao AD ứng với BC

Trong tam giác vuông ABD:

\(cotB=\dfrac{BD}{AD}\Rightarrow BD=AD.cotB\)

Trong tam giác vuông ACD:

\(cotC=\dfrac{CD}{AD}\Rightarrow CD=AD.cotC\)

\(\Rightarrow BD+CD=AD.cotB+AD.cotC\)

\(\Rightarrow BC=AD\left(cotB+cotC\right)\)

\(\Rightarrow AD=\dfrac{BC}{cotB+cotC}\)

Trong tam giác vuông ACD:

\(sinC=\dfrac{AD}{AC}\Rightarrow AC=\dfrac{AD}{sinC}=\dfrac{BC}{sinC\left(cotB+cotC\right)}=\dfrac{20}{sin35^0\left(cot40^0+cot35^0\right)}=13,3\left(cm\right)\)

NV
27 tháng 7 2021

undefined

1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)

\(\Leftrightarrow48,68-AC^2=13,57\)

hay \(AC=5,93\left(cm\right)\)

15 tháng 3 2021

Xét \(\Delta ABC\)ta có :

\(\hept{\begin{cases}AB^2+AC^2=12^2+16^2=400\\BC^2=20^2=400\end{cases}\Rightarrow}AB^2+AC^2=BC^2\)

=> \(\Delta ABC\)vuông tại A

=> \(\widehat{A}=90^0\)

=> \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(90^0+55^0\right)=35^0\)

Vậy : ...

15 tháng 3 2021

Đố nay khi ăn ổi có cái gì đáng sợ nhất?

24 tháng 8 2016

1.Toán lớp 9

Kẻ đường cao CH

Xét tam giác vuông HCB,ta có:

góc B +    góc C=90

  60  +    góc C=90     

=> góc C= 30=> góc C=10

Áp dụng hệ thức cạnh và góc trong tam giác vuông CBH và tam giác vuông CAH,ta có:

    HB= BC x cot góc B = 9 x cot 60= 33 (cm)

=>HC=BC- HB=9- (3√3)= 3√6 (cm) (Đinh lí Py-ta-go)

    AH= HC x tan góc C= 3√6 x tan 10=1,3 (cm)

Ta có: AB = AH + HB nên AB = AH + HB =6,49 (cm)

AC = AH : sin góc C2 = 7,49 (cm)

Vậy  AB = 6,49 cm ; AC = 7,49 cm

2.Toán lớp 9

Kẻ đường cao AH.

Áp dụng hệ thức cạnh và góc trong tam giác vuông ABH,ta có:

BH = AB x cos góc B = 3,2 x cos 70= 1,09 (cm)

AH= BH x tan góc B =1,09 x tan 70= 2,99 (cm)

Ta có : BC  -  BH  = HC

  => HC =  6,2  - 2,99 = 3,21 (cm)

Áp dụng định lí Py-ta-go vào tam giác vuông AHC,ta có:

      AC2 AH+HC = (2,99)+(3,21)2  =>AC= 4,39 (cm)

Vậy AC = 4,39 cm.
Sai có gì góp ý với tui nha thanghoa

 

 

 

 

 

 

 

 

NV
8 tháng 3 2021

\(C=180^0-\left(A+B\right)=105^0\)

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow a=\dfrac{b.sinA}{sinB}=\dfrac{20.sin35^0}{sin40^0}\approx17,8\left(cm\right)\)

\(\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow c=\dfrac{b.sinC}{sinB}\approx30\left(cm\right)\)

8 tháng 3 2021

Giúp đỡ ạ

7 tháng 8 2021

AB = BH . BC = 9.BH 

mà BH = \(\dfrac{1}{2}AB\) => AB = 4,5 . AB

=> AB= 4,5

=> BH = 2,25 => HC = 6,75

Tam giác ABH vuông tại H =>AH=\(\dfrac{9\sqrt{3}}{4}\)

Tam giác AHC vuông tại H => AC=\(\dfrac{9\sqrt{3}}{2}\)

21 tháng 5 2022

sai

30 tháng 7 2021

Ta có :\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\Rightarrow AC=\dfrac{BC.sinB}{sinA}\approx2\)

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm