Cho HCN ABCD. Kẻ BH | AC. Gọi M và K là trung điểm của AH và CD. Tính góc BMK.
A B C D H M K
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi N là trung điểm của BH
=> MN là đường trung bình của tam giác ABH
=>MN//AB, MN=\(\dfrac{1}{2}\) AB
Mà AB=CD và AB//CD
=>MN//CD, MN = \(\dfrac{1}{2}\) CD
=> MNCK là hình bình hành ( Dấu hiệu nhận biết )
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (\(E\in BC\))
Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK hay góc BMK = 90o (đpcm)
(tự vẽ hình nha)
a,Ta có AM+MB=AB
NC+CD=DC
mà AB=CD(ABCD là HCN)
AM = NC (gt)
=> MB=DN (1)
Ta lại có AB//DC nên MB//DN (2)
Từ (1) và (2) => MBND là HBH
b,ta có : P là trung điểm AB
K là trung điểm AH
=>PK là đường trung bình tam giác AHB
=PK//BH (*)
mà BH//DM (MBND là HBH) (**)
từ (*) và (**) => PK//DM (ĐPCM)
c,do PK là đường trung bình
=>PK=1/2BH
=>PK = BH/2 = 6/2 =3cm
P là trung điểm AB
=> AP = 1/2AB = AB/2 = 10/2 = 5cm
ta có BH⊥AC mà BH//PK => AC⊥PK
=>△APK vuông tại K
S△APK là = 1/2AK.KP = 1/2.5.3 = 7,5
phần d mình chưa nghĩ ra
Hình bn tự vẽ
a, Xét tam giác ABH có:
AM=MC( M là trung điểm của AC)
BN=NH(N là trung điểm của BH)
=>MN là đường trung bình của tam giác ABH
=>MN=1/2AB (1)
Hay MN<AB
b,Vì MN là đường trung bình của tam giác ABH nên MN // AB (2)
Mà AB//DC( ABCD là hình chữ nhật)->AB//KC (K thuộc DC) (3)
Từ (2),(3)=>MN// KC
Vì K là trung điểm của DC=>KC=1/2DC(4)
Mà AB=DC( ABCD là hình chữ nhật) (5)
Từ(1),(4),(5)=>MN=KC
Tứ giác MNCK có:MN//KC(cmt)
MN=KC(cmt)
=> MNCK là hbh
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
hay MN//KC và MN=KC
=>MNCK là hình bình hành
b: Xét ΔBMC có
BH là đường cao
MNlà đường cao
BH cắt MN tại N
Do đó: N là trực tâm
c: MK//NC
mà NC vuông góc với BM
nên MK vuông góc với BM
hay góc BMK=90 độ
a) Tg HAB có NB=NH, MA=MH
=> MN là đường tb của tg HAB
=> MN//AB và MN=1/2AB
Mà AB//CD và AB=CD
=> MN//CD và MN=CD=KC(Vi K là trung diem CD)
hay MN//KC và MN=KC
Tứ giac MNCK có MN//KC và MN=KC
=> MNCK la hbh
b) Tg BCM có
BH_|_MC(gt)
MN_|_BC (vì MN//AB mà AB_|_BC)
MN cắt BH tại N
=> N la trực tam cua tg BCM
=> CN_|_MB
mà CN//MK (do tu giac MNCK la hbh)
=> MK_|_MB hay \(\widehat{BMK}\)=900
=90 độ
= 90 độ nhé
nhớ tích giúp nh