K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

Trả lời:

\(x-\sqrt{x}-2=8\) \(\left(ĐK:x\ge0\right)\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}-\frac{9}{4}=8\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{9}{4}=8\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{41}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}-\frac{\sqrt{41}}{2}\right)\left(\sqrt{x}-\frac{1}{2}+\frac{\sqrt{41}}{2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1+\sqrt{41}}{2}\right)\left(\sqrt{x}-\frac{1-\sqrt{41}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-\frac{1+\sqrt{41}}{2}=0\\\sqrt{x}-\frac{1-\sqrt{41}}{2}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=\frac{1+\sqrt{41}}{2}\\\sqrt{x}=\frac{1-\sqrt{41}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\left(\frac{1+\sqrt{41}}{2}\right)^2\\x=\left(\frac{1+\sqrt{41}}{2}\right)^2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{21+\sqrt{41}}{2}\left(tm\right)\\x=\frac{21-\sqrt{41}}{2}\left(tm\right)\end{cases}}\)

Vậy ...

27 tháng 7 2021

\(x-\sqrt{x}-2=8\)

Đặt \(\sqrt{x}=t\left(t\ge0\right)\)

phương trình có dạng : \(t^2-t-10=0\)

\(\Delta=1-4\left(-10\right)=41>0\)

pt có 2 nghiệm phân biệt 

\(t_1=\frac{1-\sqrt{41}}{2}\left(ktm\right);t_2=\frac{1+\sqrt{41}}{2}\)

theo cách đặt \(x=\frac{42+2\sqrt{41}}{4}=\frac{21+\sqrt{41}}{2}\)

9 tháng 10 2019

\(DK:x\in\left[\frac{7}{2};5\right]\)

PT\(\Leftrightarrow\left(\sqrt{x-3}-1\right)+\left(\sqrt{5-x}-1\right)+\left(\sqrt{2x-7}-1\right)-\left(x-4\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\frac{x-4}{\sqrt{x-3}+1}-\frac{x-4}{\sqrt{5-x}+1}+\frac{2\left(x-4\right)}{\sqrt{2x-7}+1}-\left(x-4\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\right)=0\)

Vi \(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\ne0\)(voi moi \(x\in\left[\frac{7}{2};5\right]\)

\(\Rightarrow x=4\)

Vay nghiem cua PT la \(x=4\)

12 tháng 4 2020

Đáp án :0

8 tháng 10 2016

Bạn kiểm tra lại đề bài nhé.

25 tháng 11 2016

x=9

14 tháng 6 2015

x2-x3-x+1=0

x2(1-x)+1-x=0

x2(1-x)+(1-x)=0

(1-x)(x2+1)=0

=> TH1: 1-x=0                       

x=0+1

x=1

TH2:x2+1=0

x2=0-1

x2=-1 mà x mũ dương luôn luôn là số dương nên trường hợp này loại

Vậy x=1

k chắc nữa

7 tháng 7 2017

vô nghiệm bạn nha

4 tháng 3 2020

\(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)

\(\Leftrightarrow\left(x+2\right)^2=3^2\left(x-2\right)^2\)

\(\Leftrightarrow\left(x+2\right)^2=\left(3x-6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=3x-6\\x+2=6-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-8=0\\4x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{4;1\right\}\)

4 tháng 3 2020

\(\Leftrightarrow x^2+4x+4=9x^2-36x+36\)

\(\Leftrightarrow-8x^2+40x-32=0\)

\(\Leftrightarrow-8\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)

Vậy ...

15 tháng 6 2017

Đống nhất hệ số đưa và dạng 2 pt bậc 2 nhân vs nhau :v
1 có nghiệm 
2 vô nghiệm 
:)

15 tháng 6 2017

Theo như đã nhìn 

Ta thấy 2 điều

1. Đây là 1 bài toán

2. Sau khi xài máy tính tính , nó = 0,7320508076