\(8x^3-6x=\sqrt{2x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{\left(2x+y\right)^2-8x+3}-2\sqrt{y}+\sqrt{2x+2y-3}-\sqrt{y}=0\)
\(\Leftrightarrow\dfrac{\left(2x+y\right)^2-4\left(2x+y\right)+3}{\sqrt{\left(2x+y\right)^2-8x+3}+2\sqrt{y}}+\dfrac{2x+y-3}{\sqrt{2x+y-3}+\sqrt{y}}=0\)
\(\Leftrightarrow\dfrac{\left(2x+y-3\right)\left(2x+y-1\right)}{\sqrt{\left(2x+y\right)^2-8x+3}+2\sqrt{y}}+\dfrac{2x+y-3}{\sqrt{2x+y-3}+\sqrt{y}}=0\)
\(\Leftrightarrow2x+y-3=0\)
\(\Leftrightarrow y=3-2x\)
Thế xuống pt dưới:
\(1+\sqrt{5x-4}+\sqrt{2x-1}+6x^2-x-8=0\)
\(\Leftrightarrow\left(\sqrt{5x-4}-1\right)+\left(\sqrt{2x-1}-1\right)+\left(6x^2-x-5\right)=0\)
\(\Leftrightarrow\dfrac{5\left(x-1\right)}{\sqrt{5x-4}+1}+\dfrac{2\left(x-1\right)}{\sqrt{2x-1}+1}+\left(x-1\right)\left(6x+5\right)=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐK: Tìm đk?
Đặt : \(\sqrt{4x+3}+\sqrt{2x+1}=t\)>0
\(t^2=6x+4+2\sqrt{8x^2+10x+3}\)
=> \(t^2-4=6x+2\sqrt{8x^2+10x+3}\)
Ta có phương tringf ẩn t:
\(t=t^2-4-16\)
<=> \(t^2-t-20=0\)
<=> t = -4 ( loại ) hoặc t = 5 ( tm )
Với t = 5, ta có: \(\sqrt{4x+3}+\sqrt{2x+1}=5\)=> giải phương trình này rồi tìm x. Sau đó đối chiếu với điều kiện hak.
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
ĐKXĐ: \(x\ge3\)
(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó
Pt tương đương:
\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)
Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)
\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)
Pt vô nghiệm
b.
ĐKXĐ: \(x\ge-\dfrac{3}{2}\)
Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)
Đặt \(\sqrt{2x+3}=t\ge0\) ta được:
\(t^2-t-\left(4x^2-6x+2\right)=0\)
\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\sqrt{3x+10}=4\left(đk:x\ge-\dfrac{10}{3}\right)\Leftrightarrow3x+10=16\Leftrightarrow x=2\)
b) \(\sqrt{9x^2-6x+1}=\sqrt{x^2+8x+16}\Leftrightarrow\sqrt{\left(3x-1\right)^2}=\sqrt{\left(x+4\right)^2}\Leftrightarrow3x-1=x+4\Leftrightarrow2x=5\Leftrightarrow x=\dfrac{5}{2}\)
c) \(\sqrt{2x+1}=3\left(đk:x\ge-\dfrac{1}{2}\right)\Leftrightarrow2x+1=9\Leftrightarrow x=4\)
d) \(\sqrt{2x+1}+1=x\left(đk:x\ge1\right)\Leftrightarrow\sqrt{2x+1}=x-1\Leftrightarrow2x+1=x^2-2x+1\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)\(\Leftrightarrow x=4\)(do \(x\ge1\))
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
@Arakawa Whiter T làm ra đến đây rồi không biết ổn không.
ĐK:...
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\) (\(t\ge0\))
\(PT\Leftrightarrow x^4+2x^3+8x^2-2x^3-8x^2-6x-1=2\left(x+4\right)\sqrt{2x^3+8x^2+6x+1}\)
\(\Leftrightarrow x^4+2x^3+8x^2-t^2-2xt-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+t+8\right)=0\)
ĐK: \(2x^3+8x^2+6x+1\ge0\) (*)
Đặt \(\sqrt{2x^3+8x^2+6x+1}=t\left(t\ge0\right)\)
\(PT\Leftrightarrow x^4+2x^3+8x^2-t^2=2\left(x+4\right)t\)
\(\Leftrightarrow x^4-t^2+2x^3-2xt+8x^2-8t=0\)
\(\Leftrightarrow\left(x^2-t\right)\left(x^2+2x+8+t\right)=0\)
Vì \(x^2+2x+8+t>0\)
\(\Rightarrow x^2=t\) => Giải nốt phương trình (Đến đây EZ game rồi)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
ĐKXĐ: \(x\geq \frac{-1}{2}\)
Đặt $\sqrt{4x+3}=a; \sqrt{2x+1}=b$ $(a,b\geq 0$)
ĐK:\(x\ge\frac{-1}{2}\)
Đặt t = \(\sqrt{4x+3}+\sqrt{2x+1}\left(t\ge0\right)\)
\(t^2=6x+4+2\sqrt{8x^2+10x+3}\)
Thay vào, ta có:
\(t=t^2-20\)\(\Leftrightarrow t^2-t-20=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=5\\t=-4\end{matrix}\right.\)
\(\Rightarrow t=5\)
=>x=3/2
kl:...
#Walker
![](https://rs.olm.vn/images/avt/0.png?1311)