Giải hệ
\(x+y-\sqrt{xy}=3\)
\(\sqrt{x+1}+\sqrt{y+1}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}4\sqrt{x+1}-xy\sqrt{y^2+4}=0\left(1\right)\\\sqrt{x^2-xy^2+1}+3\sqrt{x-1}=xy^2\left(2\right)\end{cases}}\)
\(ĐK:\hept{\begin{cases}x\ge1\\x^2-xy^2+1\ge0\end{cases}}\), kết hợp với phương trình (1) ta có y > 0
Từ (1) suy ra \(4\sqrt{x+1}=xy\sqrt{y^2+4}\)
\(\Leftrightarrow16\left(x+1\right)=x^2y^2\left(y^2+4\right)\Leftrightarrow\left(y^4+4y^2\right)x^2-16x-16=0\)
Giải phương trình theo ẩn x, ta được: \(x=\frac{4}{y^2}\)hoặc \(x=\frac{-4}{y^2+4}< 0\)(loại)
Với \(x=\frac{4}{y^2}\Leftrightarrow xy^2=4\)thay vào phương trình (2), ta được \(\sqrt{x^2-3}+3\sqrt{x-1}=4\)(*)
\(ĐK:x\ge\sqrt{3}\), ta có: (*)\(\Leftrightarrow\left(\sqrt{x^2-3}-1\right)+3\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2-3}+1}+\frac{3\left(x-2\right)}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2-3}+1}+\frac{3}{\sqrt{x-1}+1}\right)=0\)
Dễ thấy \(\frac{x+2}{\sqrt{x^2-3}+1}+\frac{3}{\sqrt{x-1}+1}>0\forall x\ge\sqrt{3}\)nên x - 2 = 0\(\Leftrightarrow x=2\)
Với x = 2, ta có: \(\hept{\begin{cases}y^2=2\\y>0\end{cases}}\Leftrightarrow y=\sqrt{2}\)
Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x;y\right)=\left(2;\sqrt{2}\right)\)
1.
\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)
\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)
cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ
suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý
vậy pt vô nghiệm
áp dụng BĐT Cauchy ngược dấu:
\(x+y=3+\sqrt{xy}\le3+\frac{x+y}{2}\)
\(=>\frac{x+y}{2}\le3=>x+y\le6\left(1\right)\)
\(4=\sqrt{x+1}+\sqrt{y+1}\)
=> \(8=\sqrt{4\left(x+1\right)}+\sqrt{4\left(y+1\right)}\le\frac{4\left(x+1\right)}{2}+\frac{4\left(y+1\right)}{2}=>x+y\ge6\left(2\right)\)
từ (1) và (2) => x+ y = 6
<=> \(\left\{{}\begin{matrix}x=y\\4=\left(x+1\right)=>x=y=3\\4=\left(y+1\right)\end{matrix}\right.\)
vậy hpt có No (x; y) = (3;3)
Bình phương 2 vế phương trình (2) ta được
\(pt(2)\Leftrightarrow x+y+2\sqrt{x+y+xy+1}-2=0\)
Đặt \(t=\sqrt{xy}\Rightarrow x+y=t+3\), thay vào biểu thức trên ta có
\(t+2\sqrt{t^2+t+4}-2=0\Leftrightarrow 2\sqrt{t^2+t+4}=2-t\)
Bình phương giải ra t và từ đó suy ra x+y và xy, rồi nhận đc x và y nhé!