K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

ta tính \(y'=-3mx^2-6x+2-m\)

để hàm số nghịch biến trên R thì \(\)y'<0 với mọi x thuộc R  ta có 

y'<0 với mọi x thuộc R thì \(\begin{cases}-m<0\\\Delta=b^2-4ac=36+4.3.\left(2-m\right)m=-12m^2+24m+36<0\end{cases}\)

suy ra \(\begin{cases}m>0\\-12m^2+24m+36<0\end{cases}\)

giải hệ pt ta suy đc đk của m để hàm số nghịch biến 

12 tháng 11 2023

a: \(y=-x^3-3x^2+\left(5-m\right)x\)

=>\(y'=-3x^2-3\cdot2x+5-m\)

=>\(y'=-3x^2-6x+5-m\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-6\right)^2-4\cdot\left(-3\right)\left(5-m\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(36+12\left(5-m\right)< =0\)

=>\(36+60-12m< =0\)

=>\(-12m+96< =0\)

=>-12m<=-96

=>m>=8

b: \(y=x^3+\left(2m-2\right)\cdot x^2+mx\)

=>\(y'=3x^2+2\left(2m-2\right)\cdot x+m\)

=>\(y'=3x^2+\left(4m-4\right)x+m\)

Để hàm số đồng biến trên R thì y'>=0 với mọi x

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(4m-4\right)^2-4\cdot3\cdot m< =0\end{matrix}\right.\)

=>\(16m^2-32m+16-12m< =0\)

=>\(16m^2-44m+16< =0\)

=>\(4m^2-11m+4< =0\)

=>\(\dfrac{11-\sqrt{57}}{8}< =m< =\dfrac{11+\sqrt{57}}{8}\)

11 tháng 11 2023

a: \(y=-x^3-\left(m+1\right)x^2+3\left(m+1\right)x\)

=>\(y'=-3x^2-\left(m+1\right)\cdot2x+3\left(m+1\right)\)

=>\(y'=-3x^2+x\cdot\left(-2m-2\right)+\left(3m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left(-2m-2\right)^2-4\cdot\left(-3\right)\left(3m+3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+8m+4+12\left(3m+3\right)< =0\)

=>\(4m^2+8m+4+36m+36< =0\)

=>\(4m^2+44m+40< =0\)

=>\(m^2+11m+10< =0\)

=>\(\left(m+1\right)\left(m+10\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+1>=0\\m+10< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-1\\m< =-10\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m+1< =0\\m+10>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =-1\\m>=-10\end{matrix}\right.\)

=>-10<=m<=-1

b: \(y=-\dfrac{1}{3}x^3+mx^2-\left(2m+3\right)x\)

=>\(y'=-\dfrac{1}{3}\cdot3x^2+m\cdot2x-\left(2m+3\right)\)

=>\(y'=-x^2+2m\cdot x-\left(2m+3\right)\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-1< 0\\\left(2m\right)^2-4\cdot\left(-1\right)\cdot\left(-2m-3\right)< =0\end{matrix}\right.\)

=>\(4m^2+4\left(-2m-3\right)< =0\)

=>\(m^2-2m-3< =0\)

=>(m-3)(m+1)<=0

TH1: \(\left\{{}\begin{matrix}m-3>=0\\m+1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=3\\m< =-1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< =0\\m+1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =3\\m>=-1\end{matrix}\right.\)

=>-1<=m<=3

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

11 tháng 11 2023

a: \(y=-x^3+\left(m+2\right)x^2-3x\)

=>\(y'=-3x^2+2\left(m+2\right)x-3\)

=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+16m+16-4\cdot9< =0\)

=>\(4m^2+16m-20< =0\)

=>\(m^2+4m-5< =0\)

=>\(\left(m+5\right)\left(m-1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)

=>-5<=m<=1

TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: \(y=x^3-3x^2+\left(1-m\right)x\)

=>\(y'=3x^2-3\cdot2x+1-m\)

=>\(y'=3x^2-6x+1-m\)

Để hàm số đồng biến trên R thì \(y'>=0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)

=>\(36-12\left(1-m\right)>=0\)

=>\(36-12+12m>=0\)

=>12m+24>=0

=>m+2>=0

=>m>=-2

28 tháng 9 2015

ta có \(y'=3mx^2-6x+m-2\)để hàm số nghịch biến trên R thì 

y'<0 với mọi x thuộc R

suy ra \(\begin{cases}m<0\\\Delta=9-3m\left(m-2\right)<0\end{cases}\) suy ra \(\begin{cases}m<0\\3-m^2+2m<0\end{cases}\) suy ra \(\begin{cases}m<0\\m\in\left(-\infty;-1\right)\cup\left(3;+\infty\right)\end{cases}\)

vậy \(m\in\left(-\infty;-1\right)\) thì hàm số nghịch biến trên R

28 tháng 9 2015

Ta có

\(y'=3mx^2-6x+m-2\) để hàm số nghịc biến trên R thì y'<0 với mọi x thuộc R

suy ra \(\Delta=9-\left(m-2\right)3m<0\) suy ra \(-\left(m^2-2m-3\right)<0\Rightarrow m^2-2m-3>0\)

suy ra m>3 và m<1

vậy với \(m\in\left(-\infty;1\right)\cup\left(3;+\infty\right)\) là điều cần tìm

NV
17 tháng 7 2021

\(y'=mx^2+14mx+14\)

- Với \(m=0\Rightarrow y'=14>0\) hàm đồng biến trên R (ktm)

- Với \(m\ne0\) bài toán thỏa mãn khi với mọi \(x>1\) ta có:

\(mx^2+14mx+14\le0\)

\(\Leftrightarrow m\left(x^2+14x\right)\le-14\)

\(\Leftrightarrow m\le\dfrac{-14}{x^2+14}\)

\(\Leftrightarrow m\le\min\limits_{x>1}\dfrac{-14}{x^2+14}\)

Xét hàm \(f\left(x\right)=\dfrac{-14}{x^2+14}\) với \(x>1\)

\(f'\left(x\right)=\dfrac{28\left(x+7\right)}{\left(x^2+14x\right)^2}>0\Rightarrow f\left(x\right)\) đồng biến

\(\Rightarrow f\left(x\right)>f\left(1\right)=-\dfrac{14}{15}\Rightarrow m\le-\dfrac{14}{15}\)

NV
17 tháng 7 2021

\(y'=3x^2+6x+m+1\)

\(y'\le0\Leftrightarrow3x^2+6x+1\le-m\)

Bài toán thỏa mãn khi: \(-m\ge\max\limits_{\left(-1;1\right)}\left(3x^2+6x+1\right)\)

Xét hàm \(f\left(x\right)=3x^2+6x+1\) trên \(\left(-1;1\right)\)

\(f'\left(x\right)=6\left(x+1\right)>0\) ; \(\forall x\in\left(-1;1\right)\Rightarrow f\left(x\right)\) đồng biến trên (-1;1)

\(\Rightarrow f\left(x\right)< f\left(1\right)=10\Rightarrow-m\ge10\)

\(\Rightarrow m\le-10\)

24 tháng 9 2023

help