K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

\(\sqrt{x-2}=3\left(x\ge2\right)\\ \Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\\ \sqrt{4x^2}+4x+1=3\Leftrightarrow\left|2x\right|=2-4x\\ \Leftrightarrow\left[{}\begin{matrix}2x=2-4x\left(x\ge0\right)\\2x=4x-2\left(x< 0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\x=1\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{1}{3}\)

31 tháng 8 2021

a, ĐK: \(x\ge2\)

\(\sqrt{2x+1}-\sqrt{x-2}=x+3\)

\(\Leftrightarrow\dfrac{x+3}{\sqrt{2x+1}+\sqrt{x-2}}=x+3\)

\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x-2}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(l\right)\\\sqrt{2x+1}+\sqrt{x-2}=1\left(vn\right)\end{matrix}\right.\)

Phương trình vô nghiệm.

 

31 tháng 8 2021

b, ĐK: \(x\ge-1\)

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow-\sqrt{x+3}\left(\sqrt{x+1}-1\right)+2x\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

3 tháng 12 2021

a, ĐKXĐ:\(x\ne-3\)

\(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+5}{x+3}-\dfrac{2}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+3}{x+3}\\ \Leftrightarrow x+1=1\\ \Leftrightarrow x=0\left(tm\right)\)

b, ĐKXĐ:\(x>2\)

\(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\\ \Leftrightarrow x^2-4x-2=x-2\\ \Leftrightarrow x^2-5x=0\\ \Leftrightarrow x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

a: \(\Leftrightarrow\sqrt{6}\left(x+1\right)=5\sqrt{6}\)

=>x+1=5

=>x=4

b: =>x^2/10=1,1

=>x^2=11

=>x=căn 11 hoặc x=-căn 11

c: =>(4x+3)/(x+1)=9 và (4x+3)/(x+1)>=0

=>4x+3=9x+9

=>-5x=6

=>x=-6/5

d: =>(2x-3)/(x-1)=4 và x-1>0 và 2x-3>=0

=>2x-3=4x-4 và x>=3/2

=->-2x=-1 và x>=3/2

=>x=1/2 và x>=3/2

=>Ko có x thỏa mãn

e: Đặt căn x=a(a>=0)

PT sẽ là a^2-a-5=0

=>\(\left[{}\begin{matrix}a=\dfrac{1+\sqrt{21}}{2}\left(nhận\right)\\a=\dfrac{1-\sqrt{21}}{2}\left(loại\right)\end{matrix}\right.\)

=>x=(1+căn 21)^2/4=(11+căn 21)/2

27 tháng 7 2023

tkss b nhiều

30 tháng 1 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).

8 tháng 10 2021

\(c,=2+2\sqrt{3}-\left(2+\sqrt{2}\right)=2\sqrt{3}-\sqrt{2}\\ d,=\sqrt{\left(2x-3\right)^2}-2x+1=\left|2x-3\right|-2x+1\\ =2x-3-2x+1=-2\left(x\ge\dfrac{3}{2}\Leftrightarrow2x-3\ge0\right)\)

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

16 tháng 9 2021

a) ĐKXĐ: x <= 2/3

Pt --> 2 - 3x = 4

<=> 3x = -2

<=> x = -2/3 (thỏa)

16 tháng 9 2021

b) ĐKXĐ: x >= 2

Pt --> x^2 + 4x + 4 = x^2 - 4x + 4

<=> 8x = 0<=> x = 0(loại)

14 tháng 12 2020

a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))

Vì hai vế ko âm, bp 2 vế ta được:

2x2 - 3 = 4x - 3

\(\Leftrightarrow\) 2x2 = 4x

\(\Leftrightarrow\) x2 = 2x

\(\Leftrightarrow\) x2 - 2x = 0

\(\Leftrightarrow\) x(x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy S = {2}

b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)

Vì hai vế ko âm, bp 2 vế ta được:

2x - 1 = x - 1

\(\Leftrightarrow\) x = 0 (KTM)

Vậy x = \(\varnothing\)

c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x - 6 = x - 3

\(\Leftrightarrow\) x2 - 2x - 3 = 0

\(\Leftrightarrow\) x2 - 3x + x - 3 = 0

\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 1) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

Vậy S = {3}

d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))

Vì hai vế ko âm, bp 2 vế ta được:

x2 - x = 3x - 5

\(\Leftrightarrow\) x2 - 4x + 5 = 0

\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0

\(\Leftrightarrow\) (x - 2)2 + 1 = 0

Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)

\(\Rightarrow\) Pt vô nghiệm

Vậy S = \(\varnothing\)

Chúc bn học tốt!

14 tháng 12 2020

Nguyễn Lê Phước Thịnh nhờ anh xíu ạ