K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

Trả lời:

\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2

Vậy - x2 + 4x - 5 < 0 với mọi x

21 tháng 7 2021

Ta có : \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left[\left(x-2\right)^2+1\right]=-\left(x-2\right)^2-1\)

Vì ( x-2)> 0 Với mọi x và 1 > 0

Nên \(-\left(x-2\right)^2-1< 0\forall x\)

Vậy.................

12 tháng 4 2018

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

4 tháng 9 2021

tiếp đi bạn

 

 

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

21 tháng 9 2021

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)

21 tháng 9 2021

mink cảm ơn

26 tháng 4 2018

Ta có: 4x –  x 2  – 5 = -( x 2  – 4x + 4) – 1 = - x - 2 2  -1

Vì  x - 2 2  ≥ 0 với mọi x nên – x - 2 2  ≤ 0 với mọi x.

Suy ra: - x - 2 2  -1 ≤ -1 với mọi x

Vậy 4x –  x 2  – 5 < 0 với mọi x.(đpcm)

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

2 tháng 8 2020

2. -x2 + x - 33 = -x2 + x - 1/4 - 131/4 = -( x2 - x + 1/4 ) - 131/4 = -( x - 1/2 )2 - 131/4

-( x - 1/2 )≤ 0 ∀ x => -( x - 1/2 )2 - 131/4 ≤ -131/4 < 0 ∀ x ( đpcm )

3. x2 + 4x + 33 = x2 + 4x + 4 + 29 = ( x + 2 )2 + 29

( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 29 ≥ 29 > 0 ∀ x ( đpcm )

4. x2 + 8x = x2 + 8x + 16 - 16 = ( x + 4 )2 - 16

( x + 4 )2  ≥ 0 ∀ x =>  ( x + 4 )2 - 16 ≥ -16 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

Vậy GTNN của biểu thức = -16, đạt được khi x = -4 

2 tháng 8 2018

a) Có x2-6x+10=(x2-2.x.3+32)+1=(x-3)2+1

Vì (x-3)2 ≥0 với mọi x

nên (x-3)2+1>0 với mọi x

b) Có 4x-x2-5=-(x2-4x+4)-1=-(x2-2.x.2+22)-1=-(x-2)2-1

Vì -(x-2)2≤0 với mọi x

nên -(x-2)2-1<0 với mọi x

c)Gỉa sử (x+5)(x-3)+20>0 là đúng thì

⇔x2-3x+5x-15+20>0

⇔x2+2x+5>0 ⇔(x2+2x.1+12)+4>0 ⇔(x+1)2+4>0

Vì (x+1)2 >=0 với mọi x

Nên (x+1)2+4>0 là đúng

Vậy (x+5)(x-3)+20>0 với mọi x