tìm x biết (2x-5)(3x+1)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2( x + 1 ) + 2x( x + 1 ) = 0 <=> x( x + 1 )( x + 2 ) = 0 <=> x = 0 hoặc x = -1 hoặc x = -2
x( 3x - 1 ) - 5( 1 - 3x ) = 0 <=> x( 3x - 1 ) + 5( 3x - 1 ) = 0 <=> ( 3x - 1 )( x + 5 ) = 0 <=> x = 1/3 hoặc x = -5
Trả lời:
1, \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=-2\)
Vậy x = 0; x = - 1; x = - 2 là nghiệm của pt.
2, \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5\end{cases}}}\)
Vậy x = 1/3; x = - 5 là nghiệm của pt.
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(\left(x-1\right)^2-\left(2x\right)^2=0< =>\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(< =>\left(-x-1\right)\left(3x-1\right)=0< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\left(3x-5\right)^2-x\left(3x-5\right)=0< =>\left(3x-5\right)\left(3x-5-x\right)=0\)
\(< =>\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{5}{2}\end{cases}}\)
a, \(\left(x-1\right)^2-\left(2x\right)^2=0\Leftrightarrow\left(x-1-2x\right)\left(x-1+2x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\Leftrightarrow x=-1;x=\frac{1}{3}\)
b, \(\left(3x-5\right)^2-x\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x-5-x\right)=0\Leftrightarrow\left(3x-5\right)\left(2x-5\right)=0\Leftrightarrow x=\frac{5}{3};x=\frac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(3x+2\right)\left(2x-5\right)=\left(2x-5\right)\left(2x+5\right)\\ \Leftrightarrow\left(3x+2\right)\left(2x-5\right)-\left(2x-5\right)\left(2x+5\right)=0\\ \Leftrightarrow\left(2x-5\right)\left(3x+2-2x-5\right)=0\\ \Leftrightarrow\left(2x-5\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\\ b,4x^2-8x=0\\ \Leftrightarrow4x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`(3x-5)(2x-1)-(x+2)(6x-1)=0`
`<=>(6x^2-3x-10x+5)-(6x^2-x+12x-2)=0`
`<=>6x^2-13x+5-6x^2-11x+2=0`
`<=>-24x+7=0`
`<=>-24x=-7`
`<=>x=7/24`
Vậy `S={7/24}`