K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2015

câu b nhầm nhé 

b/ \(\Rightarrow\sqrt{2x-1}=2x-1\Rightarrow2x-1=\left(2x-1\right)^2\)

\(\Rightarrow\left(2x-1\right)\left(1-2x+1\right)=0\)

\(\Rightarrow2x-1=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

hoặc \(2-2x=0\Rightarrow2x=2\Rightarrow x=1\)

vậy x = 1/2 ; x = 1

25 tháng 9 2023

a) \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-1\right)}=-\left(x+3+x-1-6\right)\)\(\left(Đk:x\ge1\right)\)

\(\left(\sqrt{x-1}+\sqrt{x+3}\right)^2+\sqrt{x-1}+\sqrt{x-3}-6=0\)

\(\left(\sqrt{x-1}+\sqrt{x+3}+3\right)\left(\sqrt{x-1}+\sqrt{x+3}-2\right)=0\)

Đến đây em xét các trường hợp rồi bình phương lên là được nha

b) \(\sqrt{3x-2}+\sqrt{x-1}=3x-2+x-1-6+2\sqrt{\left(3x-2\right)\left(x-1\right)}\left(Đk:x\ge1\right)\)

\(\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-\left(\sqrt{3x-2}+\sqrt{x-1}\right)-6=0\)

\(\left(\sqrt{3x-2}+\sqrt{x-1}-3\right)\left(\sqrt{3x-2}+\sqrt{x-1}+2\right)=0\)

Đến đây em xét các trường hợp rồi bình phương lên là được nha

AH
Akai Haruma
Giáo viên
25 tháng 9 2023

a/ ĐKXĐ: $x\geq 1$

Đặt $\sqrt{x-1}=a; \sqrt{x+3}=b$ thì pt trở thành:

$a+b+2ab=6-(a^2+b^2)$

$\Leftrightarrow a^2+b^2+2ab+a+b-6=0$

$\Leftrightarrow (a+b)^2+(a+b)-6=0$

$\Leftrightarrow (a+b-2)(a+b+3)=0$

Hiển nhiên do $a\geq 0; b\geq 0$ nên $a+b+3>0$. Do đó $a+b-2=0$

$\Leftrightarrow a+b=2$

Mà $b^2-a^2=(x+3)-(x-1)=4$

$\Leftrightarrow (b-a)(b+a)=4\Leftrightarrow (b-a).2=4\Leftrightarrow b-a=2$

$\Rightarrow \sqrt{x+3}=b=(a+b+b-a):2=(2+2):2=2$

$\Leftrightarrow x=1$ (tm)

a: =>2x^2-3x-2=6x+2

=>2x^2-9x-4=0

=>\(x=\dfrac{9\pm\sqrt{113}}{4}\)

b: \(=\dfrac{x-3\sqrt{x}+4-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

loading...

b: =>x-3căn x+4=căn x

=>(căn x-2)^2=0

=>căn x-2=0

=>x=4(loại)

a: Ta có: \(x-3\sqrt{x+1}=-3\)

\(\Leftrightarrow\sqrt{9x+9}=x+3\)

\(\Leftrightarrow x^2+6x+9-9x-9=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

28 tháng 8 2021

a, ĐK: \(x\ge-1\)

\(x-3\sqrt{x+1}=-3\)

\(\Leftrightarrow x+3\left(1-\sqrt{x+1}\right)=0\)

\(\Leftrightarrow x-\dfrac{3x}{1+\sqrt{x+1}}=0\)

\(\Leftrightarrow x\left(1-\dfrac{3}{1+\sqrt{x+1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1+\sqrt{x+1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)

27 tháng 9 2023

a) \(\sqrt{2x}=12\left(đk:x\ge0\right)\)

\(2x=144\)

\(x=72\)

b) \(\sqrt{9x^2-6x}+1=10\)\(\left(Đk:x\le0;x\ge\dfrac{2}{3}\right)\)

\(\sqrt{9x^2-6x}=9\)

\(9x^2-6x=81\)

\(\left(3x-1\right)^2=82\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{82}+1}{3}\\x=\dfrac{1-\sqrt{82}}{3}\end{matrix}\right.\)

c) \(x^2\sqrt{5}-\sqrt{125}=0\)

\(x^2\sqrt{5}=5\sqrt{5}\)

\(x^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)

27 tháng 9 2023

các thầy cô giúp e vs ạ

28 tháng 8 2023

\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{3;-1\right\}\)

\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)

\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)

Vậy \(S=\left\{28\right\}\)

loading...  loading...  

18 tháng 9 2021

Mn giúp e với ak

18 tháng 9 2021

a) \(\sqrt{x^2-6x+9}\)

\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)

\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x

⇒x∈\(R\)

b) \(\sqrt{x^2-2x+1}\)

\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)

\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x

⇒x∈\(R\)

24 tháng 12 2023

a: \(\left(2x-3\right)^2=\left|3-2x\right|\)

=>\(\left\{{}\begin{matrix}\left|2x-3\right|>=0\\\left(2x-3\right)^2=\left(2x-3\right)\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)=0\)

=>\(\left(2x-3\right)\left(2x-3-1\right)=0\)

=>\(\left(2x-3\right)\left(2x-4\right)=0\)

=>\(\left[{}\begin{matrix}2x-3=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)

b: \(\left(x-1\right)^2+\left(2x-1\right)^2=0\)

=>\(x^2-2x+1+4x^2-4x+1=0\)

=>\(5x^2-6x+2=0\)

\(\Delta=\left(-6\right)^2-4\cdot5\cdot2=36-20\cdot2=-4< 0\)

=>Phương trình vô nghiệm

c: ĐKXĐ: x>=0

\(x-2\sqrt{x}=0\)

=>\(\sqrt{x}\cdot\sqrt{x}-2\cdot\sqrt{x}=0\)

=>\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)

=>\(\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)

d: \(\left(x-1\right)^2+\dfrac{1}{7}=0\)

mà \(\left(x-1\right)^2+\dfrac{1}{7}>=\dfrac{1}{7}>0\forall x\)

nên \(x\in\varnothing\)

25 tháng 8 2021

a)√x−1=2(x≥1)
\(x-1=4 \)
x=5
b)
\(\sqrt{3-x}=4\)
 (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19





 

a: Ta có: \(\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

hay x=5

b: Ta có: \(\sqrt{3-x}=4\)

\(\Leftrightarrow3-x=16\)

hay x=-13

c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)

\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)

\(\Leftrightarrow-2x=-\dfrac{47}{16}\)

hay \(x=\dfrac{47}{32}\)

d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)

\(\Leftrightarrow x-1=\dfrac{49}{4}\)

hay \(x=\dfrac{53}{4}\)

e: Ta có: \(\sqrt{x-1}-3=1\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

hay x=17

f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)

\(\Leftrightarrow x+2=\dfrac{1}{64}\)

hay \(x=-\dfrac{127}{64}\)

27 tháng 8 2021

a, \(x+1\ge0\Leftrightarrow x\ge-1\)

b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)

c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

27 tháng 8 2021

d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)

e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)