Làm tính nhân
(x-2y)(x2+2xy+4y2)+x2+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)
\(\Leftrightarrow x^3+8y^3=0\)
\(\Leftrightarrow x^3=-8y^3\)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)
\(\Leftrightarrow x^3-8y^3=16\)
\(\Leftrightarrow-8y^3-8y^3=16\)
\(\Leftrightarrow y^3=-1\Rightarrow y=-1\Rightarrow x=2\)
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(3-2x\right)\left(4x^2+6x+9\right)\)
\(M=\left(x^3+3^3\right)-\left[3^3-\left(2x\right)^3\right]\)
\(M=x^3+27-27+8x^3\)
\(M=9x^3\)
Thay x=20 vào M ta có:
\(M=9\cdot20^3=72000\)
Vậy: ...
\(N=\left(x-2y\right)\left(x^2+2xy+4y^2\right)+16y^3\)
\(N=x^3-\left(2y\right)^3+16y^3\)
\(N=x^3-8y^3+16y^3\)
\(N=x^3+8y^3\)
\(N=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Thay \(x+2y=0\) vào N ta có:
\(N=0\cdot\left(x^2-2xy+4y^2\right)=0\)
Vậy: ...
a: \(\dfrac{1}{2}x^2\cdot2x^3-4x^2+3=x^5-4x^2+3\)
b: \(2y\left(xy-1\right)\left(xy+1\right)=2y\left(x^2y^2-1\right)=2x^2y^3-2y\)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)-\left(x-y\right)\left(x^2+8y^2\right)\)
\(=x^3-8y^3-\left(x^3-x^2y+8xy^2-8y^3\right)\)
\(=x^3-8y^3-x^3+x^2y-8xy^2+8y^3\)
\(=x^2y-8xy^2\)
1) Ta có: \(x^2-4xy+4y^2\)
\(=x^2-2.x.2y+\left(2y\right)^2\)
\(=\left(x-2y\right)^2\)
Phép tính trở thành: \(\left(x-2y\right)^2:\left(x-2y\right)=x-2y\)
2) Ta có: \(25x^2+2xy+\dfrac{1}{25}y^2\)
\(=\left(5x\right)^2+2.5x.\dfrac{1}{5}y+\left(\dfrac{1}{5}y\right)^2\)
\(=\left(5x+\dfrac{1}{5}y\right)^2\)
Phép tính trở thành: \(\left(5x+\dfrac{1}{5}y\right)^2:\left(5x+\dfrac{1}{5}y\right)=5x+\dfrac{1}{5}y\)
1) (x² - 4xy + 4y²) : (x - 2y)
= (x - 2y)² : (x - 2y)
= x - 2y
2) (25x² + 2xy + 1/25 y²) : (5x + 1/5 y)
= 5x + 1/5 y)² : (5x + 1/5 y)
= 5x + 1/5 y
h: \(=\left(x+3\right)\cdot\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)
\(=x^3+8y^3-x^3+y^3\)
\(=9y^3\)
b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)
\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)
\(=x^3-x^2-x+1-x^3-8\)
\(=-x^2-x-7\)
x^3+2x^2y+4xy^2-2x^2y-4xy^2-8y^3+x^2+5
-7y^3+x^2+5