K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 7 2021

\(x^3-y^3=2xy+13\)

\(\Leftrightarrow\left(x-y\right)^3+3xy\left(x-y\right)=2xy+13\)

\(\Leftrightarrow a^3-13=b\left(2-3a\right)\)(\(a=x-y,b=xy\)

\(\Rightarrow a^3-13⋮\left(2-3a\right)\)

\(\Rightarrow27\left(a^3-13\right)⋮\left(3a-2\right)\)

\(\Leftrightarrow27a^3-8-343=\left(3a-2\right)\left(9a^2+6a+4\right)+343⋮\left(3a-2\right)\)

suy ra \(3a-2\inƯ\left(343\right)=Ư\left(7^3\right)\)

\(\Rightarrow a\in\left\{1,3,17,115\right\}\).

Suy ra các bộ \(\left(a,b\right)\)thỏa mãn là: \(\left(1,12\right),\left(3,-2\right),\left(17,-100\right),\left(115,-4434\right)\).

Với bộ \(\left(1,12\right)\)ta có: 

\(\hept{\begin{cases}x-y=1\\xy=12\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4,y=3\\x=-3,y=-4\end{cases}}\)

Tương tự với các bộ còn lại suy ra nghiệm của phương trình. 

15 tháng 6 2022

\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)

\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)

\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)

\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)

đến đây giải hơi bị khổ =))

1 tháng 1 2022

x3 + y3 + 1 = 6xy

<=> (x + y)3 - 3xy(x + y) + 1 = 6xy

<=> (x + y)3 + 8 - 3xy(x + y + 2) = 7

<=> (x + y + 2)(x2 - xy + y2 + 2x + 2y + 4) = 7

Đến đây bạn tự giải tiếp

13 tháng 10 2024

câu cuối là -2x-2y mà?

 

17 tháng 4 2022

x3 - 6xy + y3 = 8

<=> (x + y)3 - 3xy(x + y) - 6xy + 8 = 16

<=> (x + y + 2)(x2 + y2 - xy - 2x - 2y + 4) = 16

<=> \(\left(x+y+2\right)\left[\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\right]=16\)

Nhận thấy \(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\ge0\)

=> x + y + 2 > 0

Khi đó 16 = 1.16 = 2.8 = 4.4

Lập bảng 

x + y + 2116428 
\(\left(x-\dfrac{1}{2}y-1\right)^2+3\left(\dfrac{1}{2}y-1\right)^2\)161482 
x      
y|     

 Đến đó bạn thế x qua y rồi làm tiếp nha

24 tháng 7 2017

Đáp án: A

20 tháng 10 2017

Đáp án A

22 tháng 1 2021

Ta có: \(xy^2+2xy+x=32y \)

⇔ \(x\left(y^2+2y+1\right)=32y\)

\(x=\dfrac{32y}{\left(y+1\right)^2}\) 

\(x=\dfrac{32y-32+32}{\left(y+1\right)^2}\)

 

\(x=\dfrac{32\left(y+1\right)}{\left(y+1\right)^2}-\dfrac{32}{\left(y+1\right)^2}\)

\(x=\dfrac{32}{y+1}-\dfrac{32}{\left(y+1\right)^2}\)

Để x là số dương ⇒ \(\left(y+1\right)^2\)∈ \(U_{\left(32\right)}\)={-32 ;-16;-8;-4;-2;-1;1;2;4;8;16;32}

Nhưng \(\left(y+1\right)^2\)là số chính phương ⇒ \(\left(y+1\right)^2\)∈ {1;4;16}

\(\left[{}\begin{matrix}\left(y+1\right)^2=1\\\left(y+1\right)^2=4\\\left(y+1\right)^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y+1=1\\y+1=2\\y+1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\\y=3\end{matrix}\right.\)  

Thay :

y = 0 ⇒ x = 0

y = 1 ⇒ x = 8

y = 3 ⇒ x = 6

Vậy x;y = ( 0;0) ; ( 8;1) ; ( 6;3)

19 tháng 10 2017

ta có: \(5x-3y=2xy-11\)

<=>\(2x-2xy+3-3y+3x=-8\)

<=>\(2x\left(1-y\right)+3\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(1-y+\frac{3}{2}\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(2-2y+3\right)=-7\) 

TH1: \(\hept{\begin{cases}2x+3=1\\2-2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=6\end{cases}}}\)

TH2:\(\hept{\begin{cases}2x+3=-1\\2-2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

TH3:\(\hept{\begin{cases}2x+3=7\\2-2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

TH4:\(\hept{\begin{cases}2x+3=-7\\2-2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)

Vậy nghiệm của pt là: (x;y)={  (-1;6);(-2;-1);(2;3);(-5;2)}