Cho x,y>0 thoả x^2>2;y^2>2
CMR: x^4-x^3y+x^2y^2-xy^3+y^4>x^2+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/97024326380.html
Tham khảo ở link này
Học tốt!!!!!!!!!!
\(A=\frac{x^2+\left(a+b\right)x+ab}{x}=x+\frac{ab}{x}+a+b\)
\(\Rightarrow A\ge2\sqrt{\frac{ab.x}{x}}+a+b=2\sqrt{ab}+a+b\)
Dấu "=" xảy ra khi \(x=\sqrt{ab}\)
b/ \(x^2+x=y^2\)
- Với \(x=0\Rightarrow y=0\)
- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}x^2+x>x^2\\x^2+x< x^2+2x+1=\left(x+1\right)^2\end{matrix}\right.\)
\(\Rightarrow x^2< y^2< \left(x+1\right)^2\Rightarrow\) không tồn tại y nguyên thỏa mãn
- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}x^2+x=\left(x+1\right)^2-\left(x+1\right)\ge\left(x+1\right)^2\\x^2+x< x^2\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2\le y^2< x^2\Rightarrow y^2=\left(x+1\right)^2\)
\(\Rightarrow x^2+x=\left(x+1\right)^2\Rightarrow x+1=0\Rightarrow x=-1\Rightarrow y=0\)
theo đề bài ta có (x+y)^2>=1
2(x^2+y^2)>=(x+y)^2>=1
x^2+y^2>=1/2
(x^2+y^2)^2>=1/4
2(x^4+y^4)>=(x^2+y^2)^2>=1/4
x^4+y^4>=1/8(đề bạn ghi thiếu thì phải)
ĐỀ sai rồi bn ơi
neu x ; y > 0 thi ms tim dc max chu
đề sai nha