K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

(4x + 1)(12x - 1)(3x + 2)(x+1) = 4

[(4x+1)(3x+2)][(12x-1)(x+1)]=4

(12x2+11x+2)(12x2+11x-1)=4

dat a=12x2+11x+2

khi do phuong trinh tro thanh:

a(a-3)=4

a2-3a-4=0

a2+a-4a-4=0

a(a+1)-4(a+1)=0

(a+1)(a-4)=0

=>a+1=0 hoac a-4=0

=>a=-1 hoac a=4

=>12x2+11x+2=-1 hoac 12x2+11x+2=4

+)12x2+11x+2=-1

=>12x2+11x+3=0

=>36x2+33x+12=0

=>36x2+33x+121/16+71/16=0

=>(6x+11/4)2=-71/16(vo li)

+)12x2+11x+2=4

=>12x2+11x-2=0

=>36x2+33x-6=0

=>36x2+33x+121/4-145/4=0

=>(6x+11/4)2=145/4

=>6x+11/4=(can 145)/2

...(tu lam tiep nha)

 

 

4 tháng 9 2021

undefined

Ta có: \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4\)

\(=\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)-4\)

\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

\(=\left(12x^2+11x\right)^2+\left(12x^2+11x\right)-6\)

\(=\left(12x^2+11x+3\right)\left(12x^2+11x-2\right)\)

 

15 tháng 7 2016

\(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-\left(4x-12\right)\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

\(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

4 tháng 1 2019

\(A=\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(A=\left[\left(x+1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x+2\right)\right]+4x^2\)

\(A=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

Đặt \(p=x^2-4,5x-8\)ta có :

\(A=\left(p-2,5x\right)\left(p+2,5x\right)+4x^2\)

\(A=p^2-\left(2,5x\right)^2+4x^2\)

\(A=p^2-6,25x^2+4x^2\)

\(A=p^2-2,25x^2\)

\(A=p^2-\left(1,5x\right)^2\)

\(A=\left(p-1,5x\right)\left(p+1,5x\right)\)

Thay \(p=x^2-4,5x-8\)vào A ta có :

\(A=\left(x^2-4,5x-8-1,5x\right)\left(x^2-4,5x-8+1,5x\right)\)

\(A=\left(x^2-6x-8\right)\left(x^2-3x-8\right)\)

4 tháng 1 2019

\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)

\(=\left(x+1\right)\left(x-8\right)\left(x-4\right)\left(x+2\right)+4x^2\)

\(=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)

  Đặt \(x^2-2x-8=t\)

  Ta có : \(\left(t-5x\right)t+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-2.\frac{5}{2}xt+\frac{25}{4}x^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}\right)^2-\frac{9}{4}x^2\)

\(=\left(t-\frac{5}{2}-\frac{3}{2}x\right)\left(t-\frac{5}{2}+\frac{3}{2}x\right)\)

    Học tốt ~~

4 tháng 9 2021

(1 + x2)2 - 4x(1 - x2)

= (1 + x2)(1 + x2) - 4x(1 - x2)

= (1 + x2 - 4x)(1 + x2 - 1 + x2)

= 2x2(x2 - 4x + 1)

Ta có: \(\left(x^2+1\right)^2+4x\left(x^2-1\right)\)

\(=x^4+2x^2+1+4x^3-4x\)

\(=x^4+2x^3+2x^3+4x^2-2x^2-4x+1\)

\(=\left(x+2\right)\left(x^3+2x^2-2x\right)+1\)

19 tháng 8 2015

a/ \(=x^4+x^2+1+2x^3+2x+2x^2=\left(x^2+x+1\right)^2\)

b/ \(=y^4+\left(-2x^2-34\right)y^2+32xy+x^4-34x^2+225\)

câu này bn coi lại đc k , mk k lm ra 

15 tháng 8 2018

\(1)x^3-x^2y-4x-4y=x^2\left(x-y\right)-4\left(x-y\right)=\left(x^2-2^2\right)\left(x-y\right)=\left(x^2-4x+4\right)\left(x-y\right)\)

\(2)x^3-3x^2+1-3x=\left(x^3+1\right)-3x\left(x-1\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x-1\right)\)

18 tháng 5 2016

đúng ,mình k 2 nhé

4 tháng 9 2021

\(=\left(x^2+5x+8\right)\left(x^2+4x+2x+8\right)=\left(x^2+5x+8\right)\left[x\left(x+4\right)+2\left(x+4\right)\right]\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\) 

4 tháng 9 2021

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)

\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)

\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)

15 tháng 8 2018

mk trả lời cho bạn rồi mà

NV
1 tháng 9 2021

\(=x^2\left(x^2+2x+1\right)+x+1\)

\(=x^2\left(x+1\right)^2+x+1\)

\(=\left(x+1\right)\left[x^2\left(x+1\right)+1\right]\)

\(=\left(x+1\right)\left(x^3+x^2+1\right)\)

\(x^4+2x^3+x^2+x+1\)

\(=x^2\left(x+1\right)^2+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x^2+1\right)\)