Tìm dư khi chia 20192020 -1 cho 14
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài:a : 37 dư 1
a : 39 dư 14
=> a+961 chia hết cho cả 37 và 39
Mà BCNN(37,39)=1443
=> a=1443-961=482
số đó là 482
mình trước chờ mik xíu r mik viết cách giải!!!
Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.
Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k
37h + 1 = 39k + 14
37h – 37k = 2k + 13
37(h – k) = 2k + 13
Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ
Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1
a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất
Do đó h – k nhỏ nhất nên h – k = 1
Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482
Vậy a = 482
Gọi số cần tìm là a. Gọi thương của phép chia số a lần lượt cho 37, 39 là h, k.
Ta có: a = 37h + 1 ; a = 39k + 14 và h ≠ k
37h + 1 = 39k + 14
37h – 37k = 2k + 13
37(h – k) = 2k + 13
Vì 2k + 13 là số tự nhiên lẻ nên 37 ( h – k ) là số tự nhiên lẻ
Do đó: h – k là số tự nhiên lẻ, suy ra h – k ≥ 1
a là số nhỏ nhất nên k nhỏ nhất, khi đó 2k nhỏ nhất
Do đó h – k nhỏ nhất nên h – k = 1
Ta có : 2k + 13 = 37 . 1 ⇒ 2k = 24 ⇒ k = 12. Khi đó: a = 39 . 12 + 14 = 482
Vậy a = 482
Vào đây cho nhanh nha bn
http://olm.vn/hoi-dap/question/197955.html
- 1 a, [14 * 14] +12 =208 b, [58-2] :4=14
2,gọi thương của phép chia a chia cho 54 là c ta có : A: 54 =c [dư 38] =>A = 54c +38 =>A = 18.3c +18.2 +2 =18 . [3c +2 ] +2 =>A chia cho 18 được thương là 3c =12 => c=4 Vậy A= 54.4 + 38 thì bằng 254
Số tự nhiên a chia 37 dư 1 ; chia 39 dư 14 thì: a - 1 chia hết cho 37 và a - 14 chia hết cho 39. Khi đó:
- a + 961 = (a - 1) + 37*26 chia hết cho 37
- a + 961 = (a - 14) + 39*25 chia hết cho 39
- Vậy a + 961 chia hết cho 37 và 39 và có dạng a + 961 = 37*39k = 1443k => a nhỏ nhất khi k = 1 và => a = 1443 - 961 = 482.
ĐS: a = 482.
Gọi số cần tìm là \(x,\)ta có :
\(x\): 21 dư 15
\(\Rightarrow\)\(x\)= 21n + 15 (n\(\in\)N)
\(\Rightarrow\)\(2x\)= 42n + 30 = 42n + 30 = 42n + 29 + 1 : 29 dư 1
\(x\): 14 dư 8
\(\Rightarrow\)\(x\)= 14m + 8 (m \(\in\)N)
\(\Rightarrow\)\(2x\)= 28m + 16 = 28m + 15 + 1 : 15 dư 1
\(x\): 35 dư 29
\(\Rightarrow\)\(x\)= 35p + 29 (p \(\in\)N)
\(\Rightarrow\)\(2x\)= 70p + 58 = 70p + 57 + 1 : 57 dư 1
\(\Rightarrow\)\(x-1\)\(⋮\)29, 15, 57
Mà \(x\)là số tự nhiên nhỏ nhất \(\Rightarrow\)\(x-1\in BCNN\left(29,15,57\right)\)
29 = 29
15 = 3.5
57 = 3.19
\(x-1\in BCNN\left(29,15,57\right)=29.3.5.19=8265\)
\(\Rightarrow\) \(x=8265+1=8266\)
Bài này mình không nghĩ là dành cho lớp 6 đâu nha bạn, vận dụng kiến thức đồng dư khá nâng cao, bạn nên lên mạng tìm hiểu về phép đồng dư để biết thêm thông tin nha.
Vì 2019 chia 14 dư 3 nên số dư của phép chia \(2019^{2020}\)và \(3^{2020}\)cho 14 là bằng nhau.
Xét: \(3^{2020}=3^{6.336+4}=\left(3^6\right)^{336}.81\)
Vì \(3^6\)chia 14 dư 1 nên \(\left(3^6\right)^{336}\)chia 14 dư 1 mà 81 chia 14 dư 11 nên \(\left(3^6\right)^{336}.81\)chia 14 dư 11
Vậy \(2019^{2020}\)chia 14 dư 11 nên \(2019^{2020}-1\)dư 10.