Tính số dư của A=1+5+5^2+5^3+...5^99 cho 26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
a) Ta có : S=5+52+53+...+52006
5S=52+53+54+...+52007
\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)
\(\Rightarrow\)4S=52007-5
\(\Rightarrow S=\frac{5^{2007}-5}{4}\)
b) Ta có : S=5+52+53+...+52006
=(5+53)+(52+54)+...+(52004+52006)
=5(1+52)+52(1+52)+...+52004(1+52)
=5.26+52.26+...+52004.26\(⋮\)26
Vậy S\(⋮\)26
Câu 2 :
Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.
Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6
\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6
\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6
\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)
Ta có : 3=3
4=22
5=5
6=2.3
\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60
\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}
\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}
Mà theo đề bài, a nhỏ nhất và chia hết cho 11
\(\Rightarrow\)a=418
Vậy số cần tìm là 418
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(1+5+5^2\right)+....+\left(5+1+5^2\right).5^{97}+5^{99}\)\(A=31+....+5^{97}.31+5^{99}\)
ta thấy \(5^{99}=125^{33}\)
mà 125 chia 31 dư 1
suy ra 125^33 chia 31 dư 1
suy ra 5^99 chia 31 dư 1
Vậy A chia 31 dư 1
![](https://rs.olm.vn/images/avt/0.png?1311)
Mọi người ơi mình làm thế này có đúng ko ạ ?
1, Nhận xét: 45 : 15 = 3
do đó khi A chia cho 15 thì thương sẽ tăng lên 3 lần
mà số dư 17 > 15 nên 17 : 15 = 1 dư 2
Vậy A chia 15 thì được thương là một số gấp 3 lần thương ban đầu và cộng thêm 1 và số dư là 2.
2, Vì số đó chia cho 26 và 24 đều dư 5 nên nếu bớt đi 5 đơn vị thì số đó chia hết cho cả 24 và 26.
Số chia hết cho 24 và 26 là 312, 624, 936....
Số cần tìm là 317, 629, 941...
Nhận thấy 941 : 24 = 39 dư 5 và 941 : 26 = 36 dư 5
mà 39 - 36 = 3
Vậy Số cần phải tìm là 941
3, Gọi số cần tìm có dạng 8ab (gạch ngang trên đầu)
Giả sử thêm vào số cần tìm 2 đơn vị thì số đó chia hết cho 3 và cho 5, đồng thời chia cho 3 dư 1 do đó số đó có tận cùng là 5 => chữ số b ban đầu là 3.
Vì số đó chia cho 3 nên tổng các chữ số 8 + a + 3 = 11 + a chia cho 3 dư 1
nên a = 2, 5, 8 (vì 13 : 3 = 4 dư 1, 16 : 3 = 5 dư 1 và 19 : 3 = 6 dư 1)
Vậy số cần phải tìm là 823, 853, 883.
![](https://rs.olm.vn/images/avt/0.png?1311)
A=50+51+52+53+54+....+599+5100
=> A co tan cung =1
=>A : 15 du 1
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$A=[(1+5^2)+(5^4+5^6)+....+(5^{96}+5^{98})]+[(5+5^3)+(5^5+5^7)+...+(5^{97}+5^{99})]$
$=[(1+5^2)+5^4(1+5^2)+....+5^{96}(1+5^2)]+[5(1+5^2)+5^5(1+5^2)+...+5^{97}(1+5^2)]$
$=(1+5^2)(1+5^4+...+5^{96}+5+5^5+...+5^{97})$
$=26(1+5^4+...+5^{96}+5+5^5+...+5^{97})\vdots 26$