K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: =(xy-2x)-(y^2-2y)

=x(y-2)-y(y-2)

=(x-y)(y-2)

b: =(x^2-2xy+y^2)-(x-y)

=(x-y)^2-(x-y)

=(x-y)(x-y-1)

c: =(x^2-1)-(2xy-2y)

=(x-1)(x+1)-2y(x-1)

=(x-1)(x+1-2y)

d: =(x+3)(x+3-2x+5)

=(x+3)(8-x)

29 tháng 8 2023

\(a,xy-2x-y^2+2y\)

\(=x\left(y-2\right)-y\left(y-2\right)\)

\(=\left(x-y\right)\left(y-2\right)\)

\(b,x^2-2xy+y^2-x+y\)

\(=\left(x-y\right)^2-\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-1\right)\)

\(c,x^2-1-2xy+2y\)

\(=\left(x-1\right)\left(x+1\right)-2y\left(x-1\right)\)

\(=\left(x-1\right)\left(x+1-2y\right)\)

\(d,\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)

\(=\left(x+3\right)\left(x+3-2x+5\right)\)

\(=\left(x+3\right)\left(-x+8\right)\)

#Urushi

25 tháng 8 2021

mọi người giúp với 

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

11 tháng 12 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{15+10+6}=\dfrac{62}{31}=2\)

Do đó: x=30; y=20; z=12

11 tháng 12 2021

THAM KHẢO:

a) \(\dfrac{2}{5}.\left(x+\dfrac{1}{2}\right)=1\)

         \(\left(x+\dfrac{1}{2}\right)=1:\dfrac{2}{5}\)

         \(\left(x+\dfrac{1}{2}\right)=1.\dfrac{5}{2}\)

            \(x+\dfrac{1}{2}=\dfrac{5}{2}\)

            \(x=\dfrac{5}{2}-\dfrac{1}{2}\)

 Vậy     \(x=\dfrac{4}{2}=2\)

b) X;Y;Z tỉ lệ nghich với 2;3;5và x+y+z=62

Vì x, y, z tỉ lệ nghịch với 2, 3, 5 nên ta có: 

\(2x=3y=z5=>\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{62}{\dfrac{31}{30}}=60\)

+) \(\dfrac{x}{\dfrac{1}{2}}=60=>x=30\)

+) \(\dfrac{y}{\dfrac{1}{3}}=60=>y=20\)

+) \(\dfrac{z}{\dfrac{1}{5}}=60=>z=12\)

Vậy x=30

       y=20

       z=12

Tick cho mình nhé. Chúc bạn học tốt!

a) Ta có: \(4\left(x-2\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8+y\right)\)

b) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)

\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)