So sánh \(\frac{2018x2018}{2017x2019}\)với 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2018 x 2018 = ( 2017 + 1 ) x ( 2019 - 1 )
= ( 2017 + 1 ) x 2019 - ( 2017 + 1 )
= 2017 x 2019 + 2019 - 2017 - 1
= 2017 x 2019 + 1 > 2017 x 2019
\(\Rightarrow\frac{2018\times2018}{2017\times2019}=\frac{2017\times2019+1}{2017\times2019}=1+\frac{1}{2017\times2019}>1\)
Vậy ta chọn B
~~Học tốt~~
\(2018\cdot2018-2017\cdot2019\)
\(=2018\cdot2018-2017\left(2018-1\right)\)
\(=2018\cdot2018-2017\cdot2018-2017\cdot1\)
\(=2018\left(2018-2017\right)-2017\cdot1\)
\(=2018\cdot1-2017\cdot1\)
\(=1\)
\(2018\cdot2018-2017\cdot2019\)
\(=(2019-2018)\cdot(2018-2017)\)
\(=1\)
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
ta co
1/2.2<1/1*2
...
1/2018*2018<1/2017*2018
=>1/2*2+...+1/2018*1018<1/1*2+...+1/2017.2018
.....(tinh 1/1*2+...+1/2017.*2018)
=>1/2*2+...+1/2018*2018<1-1/2018<1
=>1/2*2+...+1/2018*2018<1
p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)
<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019
<=> p = 1/3 - 1/2019
<=> p = 224/673
\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)
\(=\frac{112}{673}\)
\(\frac{2016+2017.2018}{2017.2019-1}\)
\(=\frac{\left(2016+1\right)+2017.2018-1}{2017.2019-1}\)
\(=\frac{2017+2017.2018-1}{2017.2019-1}\)
\(=\frac{2017.\left(1+2018\right)-1}{2017.2019-1}\)
\(=\frac{2017.2019-1}{2017.2019-1}=1\)
\(\frac{2016+2017\times2018}{2017\times2019-1}\)
\(=\frac{2016+2017\times2018}{2017\times\left(2018+1\right)-1}\)
\(=\frac{2016+2017\times2018}{2017\times2018+2017-1}\)
\(=\frac{2016+2017\times2018}{2017\times2018+2016}\)
\(=1\)
__CHÚC BN HOK TỐT__
\(\frac{2016+2017.2018}{2017.2019-1}\)
= \(\frac{2016+2017.2018}{2017.2018+2017-1}\)
= \(\frac{2016+2017.2018}{2017.2018+2016}\)
= 1
a, \(A=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{2011\cdot2011}\)
có :
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)
\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{2011\cdot2011}< \frac{1}{2010\cdot2011}\)
nên :
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2010\cdot2011}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< 1-\frac{1}{2011}\)
\(\Rightarrow A< \frac{2010}{2011}< 1\)
b, \(A=\frac{2010}{2011}=1-\frac{1}{2011}\)
\(\frac{3}{4}=1-\frac{1}{4}\)
\(\frac{1}{4}>\frac{1}{2011}\)
nên :
\(A>\frac{3}{4}\)
Ta có:
a) A = 2018 x 2019 - 18 = 2018 x 2018 + 2018 - 18 = 2018 x 2018 + 2000
=> A = B
b) M = 521 x 527 = 521 x 525 + 521 x 2
N = 523 x 525 = 525 x 521 + 525 x 2
Do : 521 x 2 < 525 x 2
=> 521 x 525 + 521 x 2 < 525 x 521 + 525 x 2
=> M < N
c) E = 333 x 646 = 111 x 323 x 3 x 2 = 111 x 323 x 6
F = 969 x 222 = 323 x 3 x 111 x 2 = 333 x 111 x 6
=> E = F
So sánh 2018x20182017x2019 > 1.
đúng ko
đúng cho mik 1 cái k nha
Đáp án là > nha