K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 7 2024

Lời giải:

$P=(1+3)+(3^2+3^3)+(3^4+3^5)+....+(3^{94}+3^{95})$

$=(1+3)+3^2(1+3)+3^4(1+3)+....+3^{94}(1+3)$

$=(1+3)(1+3^2+3^4+...+3^{94})=4(1+3^2+3^4+....+3^{94})$

$\Rightarrow P\vdots 4$. 

$P=(1+3+3^2+3^3)+(3^4+3^5+3^6+3^7)+....+(3^{92}+3^{93}+3^{94}+3^{95})$

$=(1+3+3^2+3^3)+3^4(1+3+3^2+3^3)+.....+3^{92}(1+3+3^2+3^3)$

$=(1+3+3^2+3^3)(1+3^4+...+3^{92})$

$=40(1+3^4+...+3^{92})\vdots 10$

2 tháng 7 2017

A = 75 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . 3 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . [ 4 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . [ ( 41994 + 41993 + ... + 43 + 42 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . ( 41994 - 1 ) + 25

A = 25 . ( 41994 - 1 + 1 )

A = 25 . 41994 

A = 25 . 4 . 41993

A = 100 . 41993 \(⋮\)100

2.

a) gọi 3 số nguyên liên tiếp là a , a + 1 , a + 2 

Theo bài ra : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3

b) gọi 5 số nguyên liên tiếp là b, b + 1 , b + 2 , b + 3 , b + 4 

Theo bài ra : b + ( b + 1 ) + ( b + 2 ) + ( b + 3 ) + ( b + 4 ) 

= ( b + b + b + b + b ) + ( 1 + 2 + 3 + 4 )

= 5b + 10

= 5 . ( b + 2 ) \(⋮\)5

3.

Ta có : \(\frac{10^{94}+2}{3}=\frac{10...0+2}{3}=\frac{100...002}{3}\text{ }⋮\text{ }3\)là số nguyên

\(\frac{10^{94}+8}{9}=\frac{100...00+8}{9}=\frac{100...008}{9}\text{ }⋮\text{ }9\)là số nguyên

7 tháng 10 2020

Các bài này có lời giải rồi mà 

4 tháng 11 2017

\(A=1+3+3^2+..........+3^{11}\)

\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)

\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)

\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)

\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)

4 tháng 11 2017

A = 1 + 3 + 32 + 33 + ... + 311

A = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 310 + 311 )

A = 4 + 32 . ( 1 + 3 ) + ... + 310 . ( 1 + 3 )

A = 4 + 32 . 4 + ... + 310 . 4

A = 4 . ( 1 + 32 + ... + 310 ) \(⋮\) 4 ( Vì trong tích có một thừa số chia hết cho 4 )

~ Chúc bạn học giỏi ! ~

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
16 tháng 12 2015

=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^2012+3^2013+3^2014+3^2015)

=3(1+3+9+27)+3^5(1+3+9+27)+.....+3^2012(1+3+9+27)

=40(3+3^5+...+3^2012)

=>A chia hết cho 10