TÌM GIÁ TRỊ LỚN NHẤT CỦA :
xy + 2 ( x + y ) với x, y > 0 và x^2 + y^2 = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt \(\left(a+b\right)^2\ge4ab\) , ta có :
\(16=\left(2x+xy\right)^2\ge4.2x.xy\Leftrightarrow8x^2y\le16\Leftrightarrow x^2y\le2\)
A đạt giá trị lớn nhất bằng 2 khi x = 1, y = 2
Sử dụng Bdt thức \(ab\le\left(\frac{a+b}{2}\right)^2\) với \(a,b>0\).
Tự chứng minh
\(------------------\)
Áp dụng bđt trên, ta có:
\(A=x^2y=\frac{1}{2}.2x.xy\le\frac{1}{2}\left(\frac{2x+xy}{2}\right)^2=\frac{1}{8}\left(2x+xy\right)^2=\frac{1}{8}.4^2=2\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Kết luận: .....
\(A=\frac{x}{x^4+\frac{1}{x^2}}+\frac{\frac{1}{x}}{x^2+\frac{1}{x^4}}=\frac{x}{\frac{x^6+1}{x^2}}+\frac{\frac{1}{x}}{\frac{x^6+1}{x^4}}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\)
Áp dụng bất đẳng thức Côsi: \(x^6+1\ge2\sqrt{x^6.1}=2x^3\)
\(\Rightarrow A\le\frac{2x^3}{2x^3}=1\)
Dấu "=" xảy ra khi \(x^3=1\Leftrightarrow x=1\)
Vậy GTNN của A là 1.
\(B=\frac{-8}{3x^2+1}\)
Cách 1:
\(3x^2+1>0\)không có GTLN \(\Rightarrow\frac{8}{3x^2+1}\)không có GTNN \(\Rightarrow-\frac{8}{3x^2+1}\)không có GTLN.
Cách 2:
\(3Bx^2+B=-8\Leftrightarrow3Bx^2+B+8=0\)
+B = 0 thì pt trở thành 0 + 0 + 8 = 0 (vô lí)
+Xét B khác 0. Để pt có nghiệm x thì \(\Delta'=0-4.3B\left(B+8\right)\ge0\Leftrightarrow B\left(B+8\right)\le0\Leftrightarrow-8\le B\le0\)
\(\Rightarrow-8\le B<0\text{ (do }B\ne0\text{)}\)
=> B không có GTLN.