Tính S = 1+2+2^ 2+2^ 3+⋯+2^ 2017/ 1−2^ 2018 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:Tính S=2+2^2 +2^3 +2^4 .....+2^2016Tính S=2+2^2 +2^3 +2^4 .....+2^2016
nhân s vơi 2 có 2s= 2^2+2^3+....+2^2017
2s-s= 2^2017-2
=> s= 2^2017-2
S = 1 + 2 + 22 + 23 + ... + 22018
S = 20 + 21 + 22 + 23 +...+ 22018
2S = 2.20 + 2.21 + 2.22 + 2.23 + ... + 2.22018
2S = 21 + 22 + 23 + 24 + ... + 22018 + 22019
2S - S = 22019 - 20
S = 22019 - 1
Vậy : S = 22019 - 1
S1 = 1-2+3-4+....+2017-2018
= (-1)+(-1)+....+(-1)
= (-1) x 1009
= -1009
\(S=\frac{1+2+2^2+2^3+...+2^{2017}}{1-2^{2018}}\)
\(2S=\frac{2+2^2+2^3+2^4+...+2^{2018}}{1-2^{2018}}\)
\(2S-S=\frac{\left(2+2^2+2^3+2^4+...+2^{2018}\right)-\left(1+2+2^2+2^3+...+2^{2017}\right)}{1-2^{2018}}\)
\(S=\frac{2^{2018}-1}{1-2^{2018}}\)
\(S=\frac{2^{2018}-1}{-\left(1-2^{2018}\right)}.\left(-1\right)\)
\(S=\frac{2^{2018}-1}{-1+2^{2018}}.\left(-1\right)\)
\(S=-1\)
Vậy \(S=-1\)
Đặt A = 1 + 2 + 2^2 + 2^3 + ........ + 2^2017
2A = 2 + 2^2 + 2^3 + 2^4 + ....... + 2^2018
2A - A= (2 + 2^2 + 2^3 + 2^4 + ....... + 2^2018) - (1 + 2 + 2^2 + 2^3 + ........ + 2^2017)
A = 2^2018 - 1
Ta có : S= 1+2+2^2+2^3+..........+2^2017/1-2^2018
hay S = A / 1-2^2018
S = 2^2018 - 1/ 1- 2^2018
S = (-1) . (1- 2 ^2018) / 1 - 2^2018
S = -1
Đáp án là D
Ta có:
S = 1 - 2 + 3 - 4 + ... + 2017 - 2018
S = (1 - 2) + (3 - 4) + ... + (2017 - 2018)
S = (-1) + (-1) + ... + (-1)
S = 1009.(-1) = -1009
\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)
\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)
a, \(S_1=3+4+6+8+...+2016+2017\)
\(S_1=3+\left(4+6+8+...+2016\right)+2017\)
Số số hạng của (4 + 6 + 8 + ... + 2016) là:
\(\left(2016-4\right)\div2+1=1007\)
Tổng của (4 + 6 + 8+ ... + 2016) là:
\(\frac{\left(4+2016\right).1007}{2}=1017070\)
\(\Rightarrow S_1=3+4+6+8+..+2016+2017=3+1017070+2017=1019090\)
b, \(S_2=2+3+5+7+...+2017+2018\)
\(S_2=2+\left(3+5+7+...+2017\right)+2018\)
Số số hạng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{2017-3}{2}+1=1008\)
Tổng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{\left(3+2017\right).1008}{2}=1018080\)
\(\Rightarrow S_2=2+3+5+7+...+2017+2018=2+1018080+2018=1020100\)
S=1+2+2^ 2+2^ 3+⋯+2^ 2017/ 1−2^ 2018
=B/1-2^ 2018
với B=1+2+2^ 2+2^ 3+⋯+2^ 2017
2B=2+2+2^ 2+2^ 3+⋯+2^ 2018
B=2^ 2018-1
ta có: S=2^ 2018-1/1-2^ 2018=-1
chịu
hok tốt