Tìm x biết:
\(x=\frac{a}{b}=\frac{a+b}{a}\left(a,b>0\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A là biểu thức cần CM
ví dụ Từ ĐK a + b + c = 3 => a² + b² + c² ≥ 3 ( Tự chứng minh )
Áp dụng BĐT quen thuộc x² + y² ≥ 2xy
a^4 + b² ≥ 2a²b (1)
b^4 + c² ≥ 2b²c (2)
c^4 + a² ≥ 2c²a (3)
ban chon dung nguoi roi
A=[x^2+(a+b)x+ab]/x=x+ab/x+(a+b)
=\(\left(\sqrt{x}-\frac{\sqrt{ab}}{\sqrt{x}}\right)^2+2\sqrt{ab}+\left(a+b\right)\)
Min A=\(\left(\sqrt{a}+\sqrt{b}\right)^2\)
khi x=\(\sqrt{ab}\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0
Có: \(A=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=\frac{x^2}{x}+\frac{ax}{x}+\frac{bx}{x}+\frac{ab}{x}\)
\(=x+a+b+\frac{ab}{x}\)
Áp dụng bđt Cô si với 2 số dương là x và \(\frac{ab}{x}\) ta có:
\(x+\frac{ab}{x}\ge2.\sqrt{x.\frac{ab}{x}}=2.\sqrt{ab}\)
Do đó, \(A\ge2.\sqrt{ab}+a+b=\sqrt{ab}+a+\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
Dấu "=" xảy ra khi \(\begin{cases}x=\frac{ab}{x}\\x>0\end{cases}\)\(\Leftrightarrow x^2=ab\Leftrightarrow x=\sqrt{ab}\)
Vậy Min A = \(\left(\sqrt{a}+\sqrt{b}\right)^2\) khi \(x=\sqrt{ab}\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
Do điều kiện là x > 0 nên sẽ khó khăn khi quy đồng và xét delta.
Áp dụng bất đẳng thức Côsi
\(A=x+\frac{5}{2x}-3\ge2\sqrt{x.\frac{5}{2x}}-3=\sqrt{10}-3\)
Dấu "=" xảy ra khi \(x=\frac{5}{2x}\text{ và }x>0\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
Vậy GTNN của A là \(\sqrt{10}-3\)
\(B=\frac{x^2+\left(a+b\right)x+ab}{x}=x+\frac{ab}{x}+a+b\ge2\sqrt{x.\frac{ab}{x}}+a+b=2\sqrt{ab}+a+b\)
Dấu "=" xảy ra khi \(x=\frac{ab}{x}\text{ và }x>0\Leftrightarrow x=\sqrt{ab}\)
Vậy GTNN của B là \(2\sqrt{ab}+a+b\)
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Ta có:
\(1=a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow abc\le\frac{1}{27}\)
\(X=\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\)
\(=\left(1+\frac{1}{3a}+\frac{1}{3a}+\frac{1}{3a}\right)\left(1+\frac{1}{3b}+\frac{1}{3b}+\frac{1}{3b}\right)\left(1+\frac{1}{3c}+\frac{1}{3c}+\frac{1}{3c}\right)\)
\(\ge\frac{4}{\sqrt[4]{27a^3}}.\frac{4}{\sqrt[4]{27b^3}}.\frac{4}{\sqrt[4]{27c^3}}\)
\(=\frac{4^3}{\sqrt[4]{27^3}.\sqrt[4]{a^3b^3c^3}}\ge\frac{4^3}{\sqrt[4]{27^3}.\sqrt[4]{\frac{1}{27^3}}}=64\)
\(x=\frac{a}{b}=\frac{a+b}{a}\)
xét \(\frac{a}{b}=\frac{a+b}{a}\)
\(< =>a^2=ab+b^2\)
\(a^2-ab-b^2=0\)
\(\frac{a^2}{b^2}-\frac{a}{b}-1=0\)
\(\left(\frac{a}{b}\right)^2-\frac{a}{b}-1=0\)
đặt \(\frac{a}{b}=c\)
\(c^2-c-1=0\)
\(a=1;b=-1;c=-1\)
\(\Delta=\left(-1\right)^2-\left(4.1.-1\right)=1+4=5\)
\(\sqrt{\Delta}=\sqrt{5}\)
\(c_1=\frac{1+\sqrt{5}}{2}\left(TM\right)\)
\(c_2=\frac{1-\sqrt{5}}{2}\left(KTM\right)\)kết hợp đkxđ: \(a,b>0\)
mà \(1-\sqrt{5}< 0\left(KTM\right)\)
\(< =>\frac{a}{b}=\frac{1+\sqrt{5}}{2}=x\)
\(x=\frac{1+\sqrt{5}}{2}\)