nhờ các cô giải giúp
Tìm a và b biêt 1ab+a = 179 với a>b 5 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm ab
ab + a = 46 và a- b = 2
1ab - a = 123 và a hơn b 3 đơn vị
ab = 22 - ba [ a, b khác 0 ]
cấu tạo số
a) \(5^2\cdot3^x=575\)
\(\Rightarrow3^x=\dfrac{575}{5^2}\)
\(\Rightarrow3^x=\dfrac{575}{25}\)
\(\Rightarrow3^x=23\)
Xem lại đề
b) \(5\cdot2^x-7^2=31\)
\(\Rightarrow5\cdot2^x=31+49\)
\(\Rightarrow5\cdot2^x=80\)
\(\Rightarrow2^x=\dfrac{80}{5}\)
\(\Rightarrow2^x=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
c) \(5^x+5^{x+2}=650\)
\(\Rightarrow5^x\cdot\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=\dfrac{650}{26}\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
a, 52 x \(3^x\) = 575
3\(^x\) = 575 : 52
3\(^x\) = 23
nếu \(x\) ≤ 0 ta có 3\(^x\) ≤ 1 < 23 (loại) (1)
Nếu \(x\) ≥ 1 ⇒ 3\(^x\) ⋮ 3 \(\ne\) 23 vì 23 không chia hết cho 3 (2)
kết hợp (1) và(2) ta thấy không có giá trị nào của \(x\) thỏa mãn đề bài
Kết luận: \(x\in\varnothing\)
\(\dfrac{a}{a+2\sqrt{\left(a+bc\right)}}=\dfrac{a}{a+2\sqrt{a\left(a+b+c\right)+bc}}=\dfrac{a}{a+2\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(=\dfrac{a}{a+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}+\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\)
\(\le\dfrac{a}{5^2}\left(\dfrac{1}{a}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}+\dfrac{1}{\dfrac{\sqrt{\left(a+b\right)\left(a+c\right)}}{2}}\right)\)
\(=\dfrac{a}{25}\left(\dfrac{1}{a}+\dfrac{8}{\sqrt{\left(a+b\right)\left(a+c\right)}}\right)=\dfrac{1}{25}+\dfrac{8}{25}.\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)
Tương tự:
\(\dfrac{b}{b+2\sqrt{b+ac}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\)
\(\dfrac{c}{c+2\sqrt{c+ab}}\le\dfrac{1}{25}+\dfrac{4}{25}\left(\dfrac{c}{a+c}+\dfrac{c}{b+c}\right)\)
Cộng vế:
\(P\le\dfrac{3}{25}+\dfrac{4}{25}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{15}{25}=\dfrac{3}{5}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
a) 42+4=46
b)125-2=123
c)11=22-11
Mik trả lời nhanh nhất và đúng nhất đấy.Nhớ li-ke cho mik nhé!