\(\sqrt{2x^2+8x+6}\) + \(\sqrt{x^2-1}\)= 2x+2
giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow...\)
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\left(\sqrt[3]{7+x^3}-2\right)-\left(\sqrt{3+x^2}-2\right)}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^3-1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x^2-1}{\sqrt{3+x^2}+2}}{x-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x+1}{\left(\sqrt[3]{7+x^3}\right)^2+2\sqrt[3]{7+x^3}+4}-\dfrac{x+1}{\sqrt{3+x^2}+2}}{1}=\dfrac{3}{12}-\dfrac{2}{4}=\dfrac{1}{4}-\dfrac{1}{2}=-\dfrac{1}{4}\).
ĐK: `{(2x^2+8x+6>=0),(x^2-1>=0),(2x+2>=0):} <=> {(x=-1),(x>=1):}`
`\sqrt(2x^2+8x+6)+\sqrt(x^2-1)=2x+2`
`<=>(2x^2+8x+6)+(x^2-1)+2\sqrt((2x^2+8x+6)(x^2-1))=(2x+2)^2`
`<=>2(x+3)(x+1)+(x-1)(x+2)+2\sqrt((x+1)^2 (x+3)(x-1))=4(x+1)^2`
`<=> (x+1)[2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0`
`<=> [(x=-1\ (TM)),([2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0\ (1)):}`
(1) `<=> x-1=2\sqrt((x+3)(x-1))`
`<=>x^2-2x+1=4(x+3)(x-1)`
`<=>x=1\ `(TM)
Vậy `S={\pm 1}`.
\(ĐK:x\le-3;x\ge-1\)
\(PT\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(x+3\right)+\left(x-1\right)+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\\ \Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\\ \Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{25}{7}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=1\)
Vậy \(S=\left\{-1;1\right\}\)
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
1: \(=\dfrac{1}{\sqrt{2}}\cdot\left(\sqrt{2x-2\sqrt{2x-1}}-\sqrt{2x+2\sqrt{2x-1}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{2x-1}-1\right|-\left|\sqrt{2x-1}+1\right|\right)\)
TH1: x>=1
\(A=\dfrac{1}{\sqrt{2}}\left(\sqrt{2x-1}-1-\sqrt{2x-1}-1\right)=-\sqrt{2}\)
TH2: 1/2<=x<1
\(A=\dfrac{1}{\sqrt{2}}\left(1-\sqrt{2x-1}-\sqrt{2x-1}-1\right)=-\sqrt{4x-2}\)
2:
\(=\sqrt{x-1+6\sqrt{x-1}+9}-\sqrt{x-2-2\sqrt{x-2}+1+3}\)
\(=\sqrt{x-1}+3-\sqrt{\left(\sqrt{x-2}-1\right)^2+3}\)
Đk: \(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)
Ta có: \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
VT = \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\ge0\) => >VP = 2x + 2 \(\ge\)0 => x \(\ge\)-1
mà \(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\) => \(x\ge1\)
<=> \(\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
<=> \(\sqrt{x+1}.\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
<=> \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
<=> \(2x+6+x-1+2\sqrt{2\left(x-1\right)\left(x+3\right)}=4x+4\)
<=> \(2\sqrt{2\left(x-1\right)\left(x+3\right)}=x-1\)
<=> \(\sqrt{x-1}.\left(2\sqrt{2\left(x+3\right)}-\sqrt{x-1}\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\2\sqrt{2\left(x+3\right)}=\sqrt{x-1}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\left(tm\right)\\8x+24=x-1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-\frac{25}{7}\left(ktm\right)\end{cases}}\)
Vậy S = {1}