Cho tam giác ABC nhọn . CMR : \(\Sigma\sqrt{\dfrac{cosA.cosB}{cosC}}>2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)
Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)
Suy từ giả thiết :
\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)
Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
\(\Rightarrow\Delta ABC\) là tam giác đều.
đánh lên lại tim đi,bai này lm nhiều quá đến ngán rồi
\(\left(b^3+c^3\right)\left(1+1\right)\left(1+1\right)\ge\left(b+c\right)^3\)
\(\Rightarrow b^3+c^3\ge\dfrac{\left(b+c\right)^3}{4}\Rightarrow\dfrac{a}{\sqrt[3]{b^3+c^3}}\le\dfrac{a\sqrt[3]{4}}{b+c}\)
Tương tự và cộng lại:
\(VT\le\sqrt[3]{4}\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)< \sqrt[3]{4}\left(\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\right)=2\sqrt[3]{4}\)
\(\Rightarrow \tan A+\tan C=2\tan B\)
\(\Leftrightarrow \frac{\sin\left ( A+C \right )}{\cos A\cos C}=2\cdot\frac{\sin\left ( A+C \right )}{\cos B}\\\)
\(\Rightarrow \cos B=2\cos A\cos C\)
\(\Leftrightarrow 2\cos B=\cos(A-C)\)
\(\left (\cos A+\cos C \right )^2=\cos^2 A+\cos^2 C+2\cos A\cos C\\=\frac{\cos2A+\cos2C}{2}+1+\cos B\\=-\cos(B)\cos(A-C)+1+\cos B \\=-2\cos^2B+\cos B+1 \le \frac{9}{8}\\\Rightarrow \cos A+\cos C\le \frac{3\sqrt2}{4}\)
Chứng minh hoàn tất.
Ta chứng minh chiều nghịch:
Khi tam giác ABC đều, góc A=gócB=gócC=60*
Khi đó cosA+cosB+cosC=3/2(đpcm)
Ta chứng minh chiều thuận
Ta chứng minh cosA+cosB+cosC≤3/2
Thật vậy:
Mà theo gt, cosA+cosB+cosC=3/2
nên ta có tam giác ABC đều(đpcm)
A B C D E F
vẽ AD,BE, CF là các đường cao của tam giác ABC
\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)
ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)
tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)
do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)
do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều
Giúp e với ; plz
Ta có : \(cos^2A+cos^2B+cos^2C=1-2.cosA.cosB.cosC\)
Đặt cos A = a ; cos B = b ; cos C = c thì : \(a^2+b^2+c^2+2abc=1\)
Dự đoán : a = b = c = 1/2 nên ta đặt
a = \(\sqrt{\dfrac{xy}{\left(y+z\right)\left(z+x\right)}}\) ; \(b=\sqrt{\dfrac{yz}{\left(x+z\right)\left(x+y\right)}};c=\sqrt{\dfrac{xz}{\left(y+z\right)\left(x+y\right)}}\) ( x ; y ; z > 0 )
Khi đó : \(\Sigma\sqrt{\dfrac{cosA.cosB}{cosC}}=\Sigma\sqrt{\dfrac{y}{x+z}}\)
Cần c/m : \(\Sigma\sqrt{\dfrac{y}{x+z}}>2\) (*)
BĐT quen thuộc ; AD BĐT AM - GM ta được : \(\sqrt{\dfrac{x+z}{y}}\le\dfrac{1}{2}\left(\dfrac{x+y+z}{y}\right)\Rightarrow\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2y}{x+y+z}\)
Suy ra : \(\Sigma\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
" = " ko xảy ra nên hiển nhiên (*) đúng
Hoàn tất c/m