Rút gọn
\(\frac{25^{14}.5^{10}.625^3.125^7}{5^{14}.125^{10}.25^3.625^7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{27^2.15^3.125^{17}.10^{10}.3^8.512+1024.25^{28}.12^6.15^7}{125.6^{17}+625^{12}.6^{13}.125^2.25^5.16}\)
=\(\frac{3^6.3^3.5^3.5^{34}.2^{10}.5^{10}.3^8.2^9+2^{10}.5^{56}.3^6.2^{12}.3^7.5^7}{5^{63}.6^{17}+5^{48}.6^{13}.5^6.2^4}\)=\(\frac{3^{17}.5^{47}.2^{19}+2^{22}.5^{63}.3^{13}}{5^{63}.6^{17}+5^{48}.6^{13}.5^6.2^4}=\frac{3^{13}.5^{47}.2^{19}.3^4+2^{19}.5^{47}.3^{13}.2^3.5^{16}}{5^{54}.6^{13}.5^9+5^{54}.6^{13}.2^4}\)
=\(\frac{3^{13}.5^{47}.2^{19}\left(3^4+2^3.5^{16}\right)}{5^{54}.6^{13}\left(5^9+2^4\right)}=\frac{6^{13}.2^6.5^{47}\left(3^4+2^3.5^{16}\right)}{5^7.5^{47}.6^{13}\left(5^9+2^4\right)}=\frac{2^6\left(3^4+2^3.5^{16}\right)}{5^7\left(5^9+2^4\right)}\)
Bạn hãy tự giải nốt
\(\dfrac{9^{14}\cdot25^5\cdot8^7}{18^2\cdot625^3\cdot24^3}\)
\(=\dfrac{3^{42}\cdot5^{10}\cdot2^{21}}{2^2\cdot3^4\cdot5^{12}\cdot2^9\cdot3^3}=\dfrac{3^{42}\cdot5^{10}\cdot2^{21}}{2^{11}\cdot3^7\cdot5^{12}}\)
\(=\dfrac{3^{35}}{5^2}\cdot2^{10}\)
\(\frac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{\left(3^2\right)^{14}\cdot\left(5^2\right)^5\cdot\left(2^3\right)^7}{\left(3^2\cdot2\right)^{12}\cdot\left(5^4\right)^3\cdot\left(3\cdot2^3\right)^3}\)
\(=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{25}\cdot5^{12}\cdot2^{21}}=\frac{3^3}{5^2}=\frac{27}{25}\)
to noi that: nguoi ta chi thich giup lam bai kho thoi chu bai nay ai di hoc cung lam dc
tai sao ban phai hoi
\(\frac{9^{14}}{18^{12}}.\frac{25^5}{625^3}.\frac{8^7}{24^3}\)
\(=\frac{9^{14}}{\left(9.2\right)^{12}}.\frac{25^5}{25^6}.\frac{8^7}{\left(8.3\right)^3}\)
\(=\frac{9^{14}}{9^{12}.2^{12}}.\frac{1}{25}.\frac{8^7}{8^3.3^3}\)
\(=\frac{9^2}{2^{12}}.\frac{1}{25}.\frac{8^4}{3^3}\)
\(=\frac{81}{4096}.\frac{1}{25}.\frac{4096}{27}\)
\(=\frac{81}{4096}.\frac{4096}{27}.\frac{1}{24}=3.\frac{1}{24}=\frac{3}{24}\)
**** **** ****
\(\frac{25^{14}.5^{10}.625^3.125^7}{5^{14}.125^{10}.25^3.625^7}=\frac{\left(5^2\right)^{14}.5^{10}.\left(5^4\right)^3.\left(5^3\right)^7}{5^{14}.\left(5^3\right)^{10}.\left(5^2\right)^3.\left(5^4\right)^7}=\frac{5^{28}.5^{10}.5^{12}.5^{21}}{5^{14}.5^{30}.5^6.5^{28}}\)
\(=\frac{5^{71}}{5^{78}}=\frac{1}{5^7}=\frac{1}{78125}\)