Bài 4 Tìm x không âm biết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1:
Áp dụng tính chất cuẩ BĐT, Ta có: \(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
Lại có: \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
=> \(x^4+y^4+z^4\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{16}{27}\)
=> GTNN của \(x^4+y^4+z^4=\frac{16}{27}\) đạt được khi x=y=z=2/3
\(x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\ge\frac{\left[\frac{\left(x+y+z\right)^2}{3}\right]^2}{3}=\frac{\left(x+y+z\right)^4}{27}=\frac{16}{27}..\)
Min = 16/27 khi x =y =z = 2/3
\(\left(x+y+z\right)^2=x^2+y^2+z^2+xy+yz+zx=2\)
mà \(xy+yz+zx\le x^2+y^2+z^2\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{4}{3}\)
Tương tự:\(x^4+y^4+z^4\ge\left(x^2+y^2+z^2\right)\cdot\frac{1}{3}\ge\frac{4^2}{3^2}\cdot\frac{1}{3}=\frac{16}{27}\)
Dấu ''='' xảy ra khi x=y=z=2/3
Vì x ≥ 0 nên bình phương hai vế ta được:
2x < 16 ⇔ x < 8
Vậy 0 ≤ x < 8
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
a) \(\sqrt{x}>4\) có nghĩa là \(\sqrt{x}>\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{x}>\sqrt{16}\Leftrightarrow x>16\)
Vậy \(x>16\)
b) \(\sqrt{4x}\le4\) có nghĩa là \(\sqrt{4x}\le\sqrt{16}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4x}\le\sqrt{16}\Leftrightarrow4x\le16\Leftrightarrow x\le4\)
Vậy \(x\le4\)
c) \(\sqrt{4-x}\ge6\) có nghĩa là \(\sqrt{4-x}\ge\sqrt{36}\)
Vì \(x\ge0\) (x không âm) nên \(\sqrt{4-x}\ge\sqrt{36}\Leftrightarrow4-x\ge36\Leftrightarrow x\le-32\)
Vậy \(x\le-32\)
Lưu ý: Vì x không âm (x ≥ 0) nên các căn thức trong bài đều xác định.
a) √ x = 15
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 15 2 ⇔ x = 225
Vậy x = 225
b) 2 √ x = 14 ⇔ √ x = 7
Vì x ≥ 0 nên bình phương hai vế ta được:
x = 7 2 ⇔ x = 49 V ậ y x = 49
c) √x < √2
Vì x ≥ 0 nên bình phương hai vế ta được: x < 2
Vậy 0 ≤ x < 2
d) 2 x < 4
Vì x ≥ 0 nên bình phương hai vế ta được:
2x < 16 ⇔ x < 8
Vậy 0 ≤ x < 8
Em mới lớp 7 nên em chỉ làm những câu em biết thôi nhé:
\(a,\sqrt{x}=15\)
\(\Rightarrow x=15^2\)
\(\Rightarrow x=225\)
\(b,2\sqrt{x}=14\)
\(\sqrt{x}=14:2\)
\(\sqrt{x}=7\)
\(x=7^2\)
\(x=49\)
\(c,\sqrt{x}< \sqrt{2}\)
\(\Rightarrow x< 2\)
Còn ý d em không biết làm ạ !
\(a)\sqrt{x}=15\)
Vì \(x\ge0\) nên bình phương hai vế ta được:
\(x=15^2\Leftrightarrow x=225\)
Vậy \(x=225\)
\(b)2\sqrt{x}=14\Leftrightarrow\sqrt{x}=7\)
Vì \(x\ge0\) nên bình phương hai vế ta được:
\(x=7^2\Leftrightarrow x=49\)
Vậy \(x=49\)
\(c)\sqrt{x}< \sqrt{2}\)
Vì \(x\ge0\) nên bình phương hai vế ta được: \(x< 2\)
Vậy \(0\le x\le2\)
\(d)\sqrt{2x}< 4\)
Vì \(x\ge0\)nên bình phương hai vế ta được:
\(2x< 16\Leftrightarrow x< 8\)
Vậy \(0\le x< 8\)
a) \(\sqrt{x}=4\Rightarrow x=16\)
b) \(\sqrt{x}=\sqrt{7}\Rightarrow x=7\)
c) \(\sqrt{x}=0\Rightarrow x=0\)
d) \(2\sqrt{x}=16\Rightarrow\sqrt{x}=8\Rightarrow x=64\)
e) \(\sqrt{4x}< 2\Rightarrow2\sqrt{x}< 2\Rightarrow\sqrt{x}< 1\Rightarrow x< 1\Rightarrow0\le x< 1\)
g) \(\sqrt{x+1}>3\Rightarrow x+1>9\Rightarrow x>8\)
h) \(2\sqrt{x-2}=8\Rightarrow\sqrt{x-2}=4\Rightarrow x-2=16\Rightarrow x=18\)
k) Vì \(\sqrt{x}\ge0\Rightarrow\) pt vô nghiệm
Lời giải:
a.
$\sqrt{x}=4$
$\Leftrightarrow x=4^2=16$
b.
$\sqrt{x}=\sqrt{7}$
$\Leftrightarrow x=7$
c.
$\sqrt{x}=0$
$\Leftrightarrow x=0^2=0$
d.
$2\sqrt{x}=16$
$\sqrt{x}=16:2=8$
$x=8^2=64$
e.
$\sqrt{4x}<2$
$4x< 2^2=4$
$x< 1$
Vậy $0\leq x< 1$
g.
$\sqrt{x+1}>3$
$x+1>3^2=9$
$x>8$
h.
$2\sqrt{x-2}=8$
$\sqrt{x-2}=4$
$x-2=4^2=16$
$x=18$
k.
$\sqrt{x}=-3< 0$ vô lý do căn bậc 2 số học của 1 số thì luôn không âm.
Vậy pt vô nghiệm.