VD 5: Chứng minh :
\(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}=\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(3+\sqrt{2}\right)^2=3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2\)
\(=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b: \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c: \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d: \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{45-2\cdot3\sqrt{5}\cdot2+4}-\sqrt{45+2\cdot3\sqrt{5}\cdot2+4}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) \(\left(3+\sqrt{2}\right)^2=9+6\sqrt{2}+2=11+6\sqrt{2}\)
b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}+3-\sqrt{2}=6\)
c) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
d) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=3\sqrt{5}-2-3\sqrt{5}-2=-4\)
a) Ta có: \(VP=\left(3+\sqrt{6}\right)^2\)
\(=3^2+2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2\)
\(=9+6\sqrt{6}+6\)
\(=15+6\sqrt{6}\)≠VP
=> Sai đề rồi bạn
a, phân tích vế trái ta được:
11+6\(\sqrt{2}\)=9+2.3.\(\sqrt{2}\)+2=(3+\(\sqrt{2}\))2\(\)=VP(dpcm)
b,phân tích vế trái ta được
\(\sqrt{11+6\sqrt{ }2}\)+\(\sqrt{11-6\sqrt{ }2}\)=|3+\(\sqrt{2}\)|+|3-\(\sqrt{2}\)|=6=VP(dpcm)
a,phân tích vế trái ta được
8-2\(\sqrt{7}\)=7-2\(\sqrt{7}\)+1=(\(\sqrt{7}\)-1)2
câu b sai đề nha
\(VT=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
Trả lời:
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-12\sqrt{5}+9}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(A=\sqrt{1}\)
\(A=1\)
\(B=\frac{\left(5+2\sqrt{6}\right).\left(49-20\sqrt{6}\right).\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(3+2\sqrt{6}+2\right).\left(49-20\sqrt{6}\right).\sqrt{3-2\sqrt{6}+2}}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2.\left(49-20\sqrt{6}\right).\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{33}-11\sqrt{2}}\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right).\left(49-20\sqrt{6}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{\left(3-2\right).\left(49\sqrt{3}-60\sqrt{2}+49\sqrt{2}-40\sqrt{3}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(B=\frac{1.\left(9\sqrt{3}-11\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)
\(B=1\)
a) Ta có: \(\sqrt{29-12\sqrt{5}}=\sqrt{20-12\sqrt{5}+9}=\sqrt{\left(2\sqrt{5}-3\right)^2}\)
\(=\left|2\sqrt{5}-3\right|=2\sqrt{5}-3\)
\(\Rightarrow\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{3-\left(2\sqrt{5}-3\right)}=\sqrt{3-2\sqrt{5}+3}\)
\(=\sqrt{6-2\sqrt{5}}=\sqrt{5-2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\left|\sqrt{5}-1\right|=\sqrt{5}-1\)
\(\Leftrightarrow A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)( đpcm )
Lời giải:
a. \(=|\sqrt{7}-5|+|2-\sqrt{7}|=5-\sqrt{7}+(\sqrt{7}-2)=3\)
b. \(=\sqrt{(3+\sqrt{2})^2}-\sqrt{(3-\sqrt{2})^2}=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=(3+\sqrt{2})-(3-\sqrt{2})=2\sqrt{2}\)
c.
\(=\sqrt{(3+2\sqrt{2})^2}+\sqrt{(3-2\sqrt{2})^2}=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
$=(3+2\sqrt{2})+(3-2\sqrt{2})=6$
d.
$=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}$
$=|\sqrt{5}+1|-|\sqrt{5}-1|=\sqrt{5}+1-(\sqrt{5}-1)=2$
\(VT=\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)
\(\sqrt{2}VT=\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
\(=\sqrt{\left(\sqrt{11}+1\right)^2}-\sqrt{\left(\sqrt{11}-1\right)^2}=\left|\sqrt{11}+1\right|-\left|\sqrt{11}-1\right|\)
\(=\sqrt{11}+1-\sqrt{11}+1=2\)
\(\Rightarrow VT=\frac{2}{\sqrt{2}}=\sqrt{2}=VP\)( đpcm )