K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

1/a+1/b-4/(a+b)>=0

tóm lại là chuyển vế, quy đồng, rút gọn.

20 tháng 1 2020

Bài 1 bạn tham khảo tại đây nhé:
Tim x,y,z thoa man : x^2 +5y^2 -4xy +10x-22y +Ix+y+zI +26 = 0 ...

Chúc bạn học tốt!

20 tháng 1 2020

@Băng Băng 2k6

NV
2 tháng 3 2019

a/ Ta có \(\dfrac{\left(a+b\right)^2}{4}\ge ab\Rightarrow\left(a+b\right)^2\ge4\Rightarrow a+b\ge2\)

\(\left(a+1\right)\left(b+1\right)=ab+\left(a+b\right)+1=a+b+2\ge2+2=4\) (đpcm)

Dấu "=" xảy ra khi \(a=b=1\)

b/ Áp dụng BĐT \(ab\le\dfrac{\left(a+b\right)^2}{4}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow\dfrac{1}{ab}\ge4\)

Lại áp dụng BĐT: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\) cho 2 số dương ta được:\(\left(a+\dfrac{1}{b}\right)^2+\left(b+\dfrac{1}{a}\right)^2\ge\dfrac{1}{2}\left(a+b+\dfrac{1}{a}+\dfrac{1}{b}\right)^2=\dfrac{1}{2}\left(1+\dfrac{1}{ab}\right)^2\ge\dfrac{1}{2}\left(1+4\right)^2=\dfrac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

9 tháng 6 2016

b, \(a+b+2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}+2\sqrt{ab}=\left(\sqrt{a}+\sqrt{b}\right)^2\) ( Vì a, b >= 0 )

c, \(a+b-2\sqrt{a.b}=\sqrt{a^2}+\sqrt{b^2}-2\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\)( Vì a, b >= 0 )

8 tháng 8 2017

a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)

Xảy ra khi \(a=b=c=\frac{1}{2}\)

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)

\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)

c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)

Khi a=b

7 tháng 2 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)(Do a,b>0)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Đúng)

Vậy.....

8 tháng 2 2020

Xét hiệu \(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\)ta có:

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}=\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\)

\(=\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}=\frac{a^2-2ab+b^2}{ab\left(a+b\right)}=\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\)

Vì \(a,b>0\)\(\Rightarrow\hept{\begin{cases}ab>0\\a+b>0\end{cases}}\Rightarrow ab\left(a+b\right)>0\)

mà \(\left(a-b\right)^2\ge0\)\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

hay \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(đpcm\right)\)

10 tháng 6 2019

Điểm rơi: a=b=c=1

Xét \(a^5+\frac{1}{a}\ge2a^4\)(dấu bằng xảy ra khi và chỉ khi a=1) Trùng với điểm rơi cả Bđt nhá

Tương tự: \(b^5+\frac{1}{b}\ge2b^4\)và \(c^5+\frac{1}{c}\ge2c^4\)

Công lại: \(a^5+b^5+c^5+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(a^4+b^4+c^4\right)\)

Cm: bđt phụ sao: \(a^4+b^4+c^4\ge\frac{\left(a+b+c\right)^4}{27}\left(1\right)\)

Có: \(\hept{\begin{cases}a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\\a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\end{cases}\Rightarrow\left(1\right)}\)

Vì thế: \(Bđt\ge2\left(a^4+b^4+c^4\right)\ge2\cdot\frac{\left(a+b+c\right)^4}{27}=2\cdot\frac{3^4}{3^3}=6\)

10 tháng 6 2019

Theo bất đẳng thức cô-si

a,b,c>0

=> a5+1/a \(\ge\)2√(a5.1/a)= 2a2

Cmtt => b^5+1/b \(\ge\)2b2

1/c+c^5 \(\ge\)2c2

=> A\(\ge\)2( a2+b2+c2\(\ge\)2.(a+b+c)2/3    ( do a2+b2+c2 \(\ge\)

(a+b+c)2/3 , cai  nanày câu co thE tu cm)

A\(\ge\)2.32/3= 6(dpcm)