Bài 1: Tìm x:
a) x ( x+ 4) - 5( x - 4 ) = 0
b) x2 - 5x - 24 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)
\(\Leftrightarrow2x-1=0\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)
\(\Leftrightarrow x^3-x^3-1=x\)
hay x=-1
c: Ta có: \(56x^4+7x=0\)
\(\Leftrightarrow7x\left(8x^3+1\right)=0\)
\(\Leftrightarrow x\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d: Ta có: \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
a.
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
b.
\(6x^2-7x+2=0\)
\(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow3x\left(2x-1\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)
a: \(x^2-4x=3\left(x-4\right)\)
\(\Leftrightarrow\left(x-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
b: \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-3\end{matrix}\right.\)
a: \(x\left(x+7\right)-\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2+7x-x^2-x+6=0\)
hay x=-1
b: Ta có: \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow x+2=0\)
hay x=-2
b. (x + 2)2 - x2 + 4 = 0
<=> (x + 2 - x)(x + 2 + x) + 4 = 0
<=> 2(2 + 2x) + 4 = 0
<=> 4(1 + x) + 4 = 0
<=> 4(1 + x) = -4
<=> 1 + x = -1
<=> x = -1 - 1
<=> x = -2
\(a,\Leftrightarrow\left(x-2\right)\left(5x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{2}{5}\end{matrix}\right.\\ b,\Leftrightarrow2x^2+2x-x^2+4x-4-6=0\\ \Leftrightarrow x^2+6x-10=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{19}\\x=-3-\sqrt{19}\end{matrix}\right.\\ c,\Leftrightarrow2x^2-2x+9x-9=0\\ \Leftrightarrow\left(2x+9\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{2}\\x=1\end{matrix}\right.\)
a) Để (m-4)x+2-m=0 là phương trình bậc nhất ẩn x thì \(m-4\ne0\)
hay \(m\ne4\)
b) Để \(\left(m^2-4\right)x-m=0\) là phương trình bậc nhất ẩn x thì \(m^2-4\ne0\)
\(\Leftrightarrow m^2\ne4\)
hay \(m\notin\left\{2;-2\right\}\)
c) Để \(\left(m-1\right)x^2-6x+8=0\) là phương trình bậc nhất ẩn x thì \(m-1=0\)
hay m=1
d) Để \(\dfrac{m-2}{m-1}x+5=0\) là phương trình bậc nhất ẩn x thì \(\dfrac{m-2}{m-1}\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\m-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ne1\end{matrix}\right.\)
\(a,\Leftrightarrow x\left(x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\\ b,\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)=0\\ \Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\\ c,\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\\ d,\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)
a) \(\Leftrightarrow x\left(x+9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-9\end{matrix}\right.\)
b) \(\Leftrightarrow x\left(x+8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
c) \(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)
d) \(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x=5\)
a) \(\left(x-2\right)^2-\left(x^2-3x\right)=9\)
\(\Rightarrow x^2-4x+4-x^2+3x-9=0\)
\(\Rightarrow-x-5=0\)
=> x = -5
b) \(\left(5x-2\right)^2=\left(4-x\right)^2\)
\(\Rightarrow25x^2-10x+4-16+8x-x^2=0\)
\(\Rightarrow24x^2-2x-12=0\)
\(\Rightarrow12x^2-x-6=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{3}{4}\end{matrix}\right.\)
c) \(x^2-4x-5=0\)
=> (x - 5).(x + 1) = 0
=> x = 5 hoặc x = -1
a) x(x + 4) - 5(x - 4) = 0
<=> x2 + 4x - 5x + 20 = 0
<=> x2 - x + 20 = 0
<=> (x - 1/2)2 + 79/4 = 0
Do (x - 1/2)2 \(\ge\)0 => (x - 1/2)2 + 79/4 > 0
=> Không tồn tại x tm
b) x2 - 5x - 24 = 0
<=> x2 - 8x + 3x - 24 = 0
<=> x(x - 8) + 3(x - 8) = 0
<=> (x + 3)(x - 8) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\) <=> \(\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
Vậy x = -3 hoặc x = 8
a) x(x + 4) - 5(x - 4) = 0
<=> x2 + 4x - 5x + 20 = 0
<=> x2 - x + 20 = 0
Vì x2 - x + 20 = \(\left(x-\frac{1}{2}\right)^2+\frac{81}{4}>0\forall x\)
=> Phương trình vô nghiêm
b) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x(x + 3) - 8(x + 3) = 0
<=> (x + 3)(x - 8) = 0
<=> \(\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
Vậy tập nghiệm phương trình là \(S=\left\{-3;8\right\}\)