Tìm só tự nhiên n để S=1!+2!+3!+...+n! là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Bài 3
A = 1.2.3...n + 2024
Nếu n = 1 thì A = 1 + 2024
A = 2025
A = \(45^2\) (thỏa mãn)
Nếu n = 2 thì A = 1.2 + 2024
A = 2 + 2024
A = 2026
2026 : 8 = 253 dư 2 loại vì số chính phương chia 8 chỉ có thể dư 1 hoặc 4
Nếu n ≥ 3 thì A = 1.2.3..n + 2024
1.2.3...n ⋮ 3; 2024 : 3 = 674 dư 2
⇒ A ⋮ 3 dư 2 (loại vì số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)
Vậy n = 1 là giá trị duy nhất thỏa mãn đề bài.
Nếu n=1 thì 1!=1=1^2 (thỏa mãn)
Nếu n=2 thì 1!+ 2!=3 (loại)
Nếu n=3 thì 1!+2!+3!=9=3^2 (thỏa mãn)
Nếu n>4 hoặc n=4(loại)
vậy n=1 hoặc n=3