1/2+1/4+1/8+1/16+1/32+1/64
giup tui voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
= 32/64 + 16/64 + 8/64 + 4/64 + 2/64 + 1/64
= 63/64.
Chúc bn học tốt!!!
Tính bằng cách thuận tiện
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1-\frac{1}{64}\)
\(=\frac{63}{64}\)
Chúc bạn học tốt
mồm ngày trc thì dùng nick này bảo mình là kaitoru xong nói qua lại bt hết điêu ta bốc phét
\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)
=> 1 - \(\frac{1}{32}\)
= \(\frac{32}{32}-\frac{1}{32}\)
= \(\frac{31}{32}\)
=\(1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}\)
=\(1-\left(\frac{1.16}{2.16}\right)-\left(\frac{1.8}{4.8}\right)-\left(\frac{1.4}{8.4}\right)\left(\frac{1.2}{16.2}\right)-\frac{1}{32}\)
=\(1-\frac{16}{32}-\frac{8}{32}-\frac{4}{32}-\frac{2}{32}-\frac{1}{32}\)
=\(1-\frac{1}{32}\)
=\(\frac{31}{32}\)
\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
nhân A với (3-1) ta có :
\(A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=3^{32}-1\)
\(B=3^{32}+-1=3^{32}-1\)
\(\Rightarrow A=B\)
Đặt A=1/2−1/4+1/8−1/16+1/32−1/64A=1/2−1/4+1/8−1/16+1/32−1/64
2A=1−1/2+1/4−1/8+1/16−1/322A=1−1/2+1/4−1/8+1/16−1/32
3A=2A+A=1−1/64<1⇒A<1/3
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
\(\text{Giải :}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
\(=1 - \frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}\)
\(=1 - \frac{1}{64}=\frac{63}{64}\)
1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
=( 32+16+8+4+2+1)/64
= 63/64