RÚT GỌN BIỂU THỨC SAU
\(D=\left(3\sqrt{2}+\sqrt{6}\right)\times\sqrt{6-3\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi
d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-3}\)
f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)
\(=2-\sqrt{3}+2\sqrt{3}-3\)
\(=\sqrt{3}-1\)
b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)
\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)
\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)
\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)
\(=6-6\sqrt{3}+6\sqrt{3}=6\)
a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)
\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)
\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)
b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)
\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)
\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)
\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)
\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)
\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)
\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)
a) \(2\sqrt{32}+3\sqrt{72}-7\sqrt{50}+\sqrt{2}\)
\(=2\cdot4\sqrt{2}+3\cdot6\sqrt{2}-7\cdot5\sqrt{2}+\sqrt{2}\)
\(=8\sqrt{2}+18\sqrt{2}-35\sqrt{2}+\sqrt{2}\)
\(=-8\sqrt{2}\)
b) \(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)
\(=3-\sqrt{3}+\sqrt{3}-2\)
\(=1\)
c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)
\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)
\(=x-4+\sqrt{x^2-8x+16}\)
\(=x-4+\sqrt{\left(x-4\right)^2}\)
\(=x-4+\left|x-4\right|\)
\(=x-4+x-4\)
\(=2x-8\)
e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\left(a< b\right)\)
\(=\dfrac{1}{a-b}\sqrt{\left[a^2\left(a-b\right)\right]^2}\)
\(=\dfrac{1}{a-b}\left|a^2\left(a-b\right)\right|\)
\(=\dfrac{-a^2\left(a-b\right)}{a-b}\)
\(=-a^2\)
\(\sqrt{2}D=\left(3\sqrt{2}+\sqrt{6}\right)\cdot\sqrt{12-6\sqrt{3}}=\left(3\sqrt{2}+\sqrt{6}\right)\sqrt{9-2.3\sqrt{3}+3}\)
\(\left(3\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)\)
Nhân ra rút gọn