Tìm \(x,y\in Z\) , biết: \(3xy-5x-2y=3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3xy - 5x - 2y = 3
x(3y-5) - \(\frac{2}{3}y.3+\frac{2}{3}.5\) = 3 + 10/3
=> x(3y-5) - 2/3 (3y-5) = 19/3
=> ( x- 2/3)(3y - 5 ) = 19/3
=> 3 ( x - 2/3 )(3y - 5 ) = 19/3 * 3
=> ( 3x - 2/3.3 )(3y - 5 ) = 19
=> ( 3x- 2 )( 3y - 5) = 19
MÀ 19 = 1.19 = (-1). (-19)= 19.1 = (-19).(-1)
(+) 3x - 2 = 19 và 3y - 5 = 1
=> 3x = 21 và 3y \= 6
=> x = 7 và y = 2
Lmf tiếp
a, 3x(y-1)-y=0
3x(y-1)-(y-1)-1=0
(y-1)(3x-1)=0+1
(y-1)(3x-1)=1 Vậy (y-1) và (3x-1) là ước của 1
Ư(1)+{1;-1}
th1 y-1=1 suy ra y=2 suy ra 3x-1=-1 suy ra x=0
th2 y-1=-1 suy ra y=0 suy ra 3x-1=1 suy ra x thuộc rỗng
b, 5x(y+1)+2y=16
5x(y+1)+2(y+1)-2=16
(y+1)(5x+2)=16+2
(y+1)(5x+2)=18
Vậy (y+1) và (5x+2) thuộc ước của 18
Ư(18)={1;18;2;9;3;6;-1;-18;-2;-9;-3;-6}
Cậu liệt kê nữa là xong
ngay xua co mot con chim. mui no o duoi dit. 1 hom no ngoi xuong dat va no chet.
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
a: Q=M+N
\(=5x^2y+5x+3-3xy^2z+xy^2z-4x^2y+5x-5\)
\(=x^2y+10x-2-2xy^2z\)
\(P=M-N\)
\(=5x^2y+5x+3-3xy^2z-xy^2z+4x^2y-5x+5\)
\(=9x^2y+8-4xy^2z\)
H=N-M
=-(M-N)
\(=-9x^2y-8+4xy^2z\)
b: \(Q=x^2y+10x-2-2xy^2z\)
=>Q có bậc là 4
\(P=9x^2y+8-4xy^2z\)
=>P có bậc là 4
\(H=-9x^2y-8+4xy^2z\)
=>H có bậc là 4
c: Khi x=-1;y=3;z=-2 thì
\(Q=\left(-1\right)^2\cdot3+10\cdot\left(-1\right)-2-2\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)
\(=3-10-2+2\cdot9\cdot\left(-2\right)\)
\(=-9-36=-45\)
Khi x=-1;y=3;z=-2 thì \(P=9\cdot\left(-1\right)^2\cdot3+8-4\cdot\left(-1\right)\cdot3^2\cdot\left(-2\right)\)
\(=27+8+4\cdot9\cdot\left(-2\right)\)
\(=35-72=-37\)
H=-P
=>H=37
Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn
Hướng dẫn 1 câu, câu sau bạn tự làm nhé:
\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)
(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.
Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)
\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)
\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)
Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)
(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)
\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)
Đến đây thì chỉ cần lập bảng ước số là xong
Làm bằng cách lớp 9 như nào vậy anh . Anh hướng dẫn e trước năm sau đỡ phải hỏi lại :D
\(5x\left(3x^2y-2xy^2+1\right)-3xy\left(5x^2-3xy\right)+x^2y^2-10=0\)
\(\Leftrightarrow15x^3y-10x^2y^2+5x-15x^3y+9x^2y^2+x^2y^2-10=0\)
\(\Leftrightarrow5x=10\Leftrightarrow x=2\)
Phân tích thành nhân tử:
\(pt\Leftrightarrow x\left(3y-5\right)-\frac{2}{3}\left(3y-5\right)-\frac{10}{3}=3\)
\(\Leftrightarrow\left(3y-5\right)\left(x-\frac{2}{3}\right)=\frac{10}{3}+3\)
\(\Leftrightarrow\left(3y-5\right)\left(3x-2\right)=10+9=19\)
Đến đây dễ rồi.